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1. Lecture 1 06/01/2025

1.1 Introduction to Numerical Weather Prediction
Numerical Weathering Problem (NWP) was first proposed
by Bjerkives around 1900. It is mathematical initial value
problem (IVP).

Initial value Problem (IVP) — simple pendulum.

6+ 0’6 =0 (1.1)

e
ay — 12
dt2+we 0 (1.2)
0(t) = Acos(wt) + Bsin(wt) (1.3)

Eq.(1.1) and Eq.(1.2) are second order linear ordinary dif-
ferential equation, whose solution .Eq.(1.3) has 2 constants
of integration A and B. Here 0 and ¢ are the dependent and
independent variable since Eq.(1.1) and Eq.(1.2) have only
one independent variable.

Values of A and B will depend on initial condition.

Since ODE is second order, 2 initial condition are needed at
initial time, say # = 0. Which are:

e(t:O):l}

0(r=0
(dt L =0

(1.4)

Eq.(1.2) and initial conditions Eq.(1.4) are together called
Mathematical IVP. For any physical system the following
two requirements are needed:

1. The equation (ODE or PDE) that governs the evolution
of the above system.
2. The initial state of the system.

7 independent variables (u,v,w,T,0,p,q).

Surface area of Earth = 47R” = 47(6.37 x 10'?) ~ 5.1 x 10

m?2
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2. Lecture 2 07/01/2025

7 independent variables (u,v,w,T,p,p,q) therefore we need 7
Governing equations (system of 7 coupled non-linear partial
differential equations):

1. Conservation of masss (continuity equation).

2. Conservation of momentum in rotating frame of re-
frence (3 scalar equations, one each corresponding to
scalar component of velocity).

3. Conservation of energy (Thermodynamic energy equa-
tion).

4. Conservation of moisture (moisture continuity equa-
tion).

5. Equation of state (Ideal gas equation).

Euler discription of fluid motion is more convinent becasue
of dependance on time and above 7 equations.
Total advective and convective time of lagrangian is given by:

DT aT

— = = V-VT 2.1
Dt dt AN LY @D
~~~ Advective Term
Lagrangian Derivative ~ Local derivative
Euler Derivative
DT 0T oT oT oT
=—+4u—+v—+w— (2.2)

Dt~ ot dox dy dz

Using first law of Thermodynamics, Rate of heat is given by:

dqg = dii+dw
DU Dgq Dw
Dt Dt Dr
DT Dg Do
"or ~ o D
where %‘[] is rate at which heating of air parcel due to non-

adiabatic process, this change can happen via radiation, con-
vection, conduction, latent heat while phase change.

DU - -
—— = Fpet + Fcoriolis

s 2.3)

This above Eq.(2.3) is convective derivative equation involv-
: : : ar ., oT . dT
ing non-linear terms (i.e. U r W(Tz)'

Continuity equation:

1D -
P Ly.

o Di V=0 (2.4)

Consider grid on globe as shown in figure(1).
Let grid of following resolutions:

* 1°x1° — 3 x 10° grid cells .. no. of variables —
7% 3% 10°.

* 5°%5° = 1.3 x 10° grid cells .. no. of variables —
7x1.3%x10°.

* 20° x 20° — 9 x 103 grid cells .. no. of variables —
7x9x10%.

* 25° % 25° — 6 x 103 grid cells .". no. of variables —
7x6x10°.

These are even larger than entire country, which means that
we can’t above to find the change of varibles with these grids.
This we don’t have a way to determine initial condition, if we
try to use interpolation, it will cause errors which will grow
with time since atmosphere is chaotic and dynamic system.

Figure 1. Figure showing the grid



3. Lecture 3 08/01/2025

u=i+u 3.1
Here, u is the velocity field, which is decomposed into a mean
component i and a fluctuating component #'.
Navier-Stokes Equation The general Navier-Stokes equation
is given by:

du du Jdu du

1op
_EZ
?u  d*u d’u

Reynolds-Averaged Navier-Stokes (RANS) Equation Apply-
ing Reynolds decomposition (u = i+ u’) and averaging leads
to the RANS equation:

(3.2)

dit 4__aﬁ+_8ﬁ+_aﬁ fo 10P
v = +V—+W— fi = ——
dr dx dy 0z ~~ pox
~ Coriolis N~
Local, Advection force Pressure
acceleration gradient
force
N 82ﬁ<+.82ﬁ<+_82ﬁ
"\ 922 dy?: 072
Viscous dissipation
d (—puV')

P ox + dy + dz

1 (a (—pu'd) ) (—pu’w’))

Reynolds stress tensor

(3.3)

The Reynolds stress tensor represents the transport of momen-
tum due to turbulent fluctuations.

Nonlinear Term Expansion Expanding the nonlinear term u%
using Reynolds decomposition:

du ., 0(a+u)

ugy i) =5
_-%4_ /%_;’_‘871’/4_ ’iu/
T T o T o T o

Appliing Reynolds averaging rules:

u=u+u
a=ua+u
a=ia+u = u=0.

Thus, the fluctuating component ' averages out to zero over
time, leaving only the mean component # in the averaged

equations.

We have,
du dv dw
P 34
ox + dy + dz S

Substituting u, v and w in above Eq.(3.4), we get:

Aatw) 9 +v) a0t w)

=0
ox dy dz
oi IV Iw
—+=—+=—=0 3.5
ox + dy + dz (35)
The term 8(?) represents the rate of change of kinetic energy

per unit mass due to turbulent fluctuations. It can be expressed
as:
2y _ 3 (pwv) |
ot dy

This term involves higher-order correlations between velocity
fluctuations, which complicates the equation system.

The closure problem arises in the Reynolds-Averaged Navier-
Stokes (RANS) equations because the number of dependent
variables (unknowns) exceeds the number of equations avail-
able. For instance: -  is an unknown. - /v (a Reynolds stress
term) introduces additional unknowns.

To resolve this, closure modelsare used, which provide approx-
imations for higher-order terms based on known variables.
For example, consider the term u/w’. Using a simple closure
model:

Ji
ox’

W = —k

u
where k is a proportionality constant (often related to eddy
viscosity). Here, u is already an unknown, so no additional
variables are introduced, avoiding further complexity.

This is an example of first-order closurewhere higher-order
terms are approximated using first-order variables.

Types of Closure Models

1. First-Order Closure:
- Simplifies higher-order terms using known variables
and gradients (e.g., eddy viscosity models).
- Example: u'w' = —k%.
- Advantage: Computationally efficient but may lack
accuracy in complex flows.

2. One-Point Closure:
- Approximates turbulence at a single point using local
flow properties.
- Example: Mixing length models, where turbulent vis-
cosity is proportional to local shear.

3. Second-Order Closure:
- Directly models second-order correlations like u/u/
and /' by solving additional transport equations.
- Provides higher accuracy but increases computational
cost.
- Example: Reynolds stress models (RSM), where addi-
tional equations are solved for Reynolds stresses.




4. Lecture 4 15/01/2025

e

— 4+ w0=0

dr? +
Initial conditions:

e(t = t()) =6

0(r =10) =
We can rewrite this equation into two 1%-order ODEs,
Let % = p, then

4.1)

d—pﬂozezo Q)

dt
do

<= (i)

Initial conditions become:
e(t = l()) =6
plt=1) = mp

4.1 Forward difference
Invoking Taylor series expansion for /(¢ +1p):

ft+1)

= f(to) + (¢ —I—to)% .

(t+19) 92 f
R 7

=1

4.2)

we will get;

d
p(t+1o) zp(t0)+Ata—1;

=1
d
plt+10) ~ plio) + (1 =10) 57|
=t

ap| _ plt+t)—p(t)
ot (t—1p)
dp| _ pn)—plo)
ot li=t, At
Eq.(4.3) is called Forward difference.
Order of Forward difference is O(At).
Similarly Forward difference for 6,
90| B(t+10)—6(1)
ot (t—19)
a6 _0(n)—08(n)
ot li=1, - At
From Eq.(i) and Eq.(4.3):

p(t+to) — p(to)

4.3)

=1

4.4)

~
=1

+w29(to) =0

p(t+1o) = plto) — (t —to) 06 (1)

p(t1) = plto) — Atw*6(to) (4.5)

From Eq.(ii) and Eq.(4.4):

0(t+19) — (1)
(t—19)

0(t+1)

9(1‘1)

= plto)

0
(to) — (t —10)p(to)
(to) — Atp(to)

4.2 Backward difference
Invoking Taylor series expansion for f(¢ —fp):

0
0

(4.6)

= f(t0) — (t —10) %

(t—10)? 3%f
+ 2!0 orr

Fle—A1) = flio) — A%

Ar)? 92
+(2!) Fra

ft—1)

=ty

=iy

“.7

=1

<,

=ty

5]

we will get;

dp
pt—t0) ~ plto) — At

=1

plt—to) ~ plio) — (t —10) 22

ot
ap| _ plio) —plt—to)
ot lr=1, (t—19)
dp

dp|  _ plto) —p(t-1)
ot

1=to - At
Eq.(4.8) is called Backward difference.
Order of Backward difference is O(At).
Similarly Backward difference for 0,

20 6(to) —6(t —1o)
or (t—19)
39| 6(1)—6(t1)
ot li=1 - At

From Eq.(i) and Eq.(4.8):

=ty

(4.8)

~
=1

(4.9)

plt+10) = plto)
(t—to)
p(t+10) = p(to) — (1 —10) @* 6 (10)
p(1) = p(to) — Atw*6(1o)
From Eq.(ii) and Eq.(4.9):
0(t+10)— 0(to)
(t—to)
0(t+1)
9([1)

+0%6(19) =0

(4.10)

(70)

0
(to) — (t —10)p(t0)
(to) — Atp(to)

P
0
0

@.11)

4.3 Current difference
The current difference method is a combination of the forward
and backward difference methods, where we approximate the



values at the current time using both the forward and backward
information.
Using forward difference:

deo

—r|_ = plto) =known = p(1o) — At @*0(ty) (4.12)

=1

Using backward difference:

ﬁ
dt

_0(n)—0(t—Ar)
e (4.13)

From Eq.(4.12) and Eq.(4.13), we can combine both the equa-
tions to get:

0(n)—0(t—Ar)

At
(1)) = 6(r — Ar) + At[p(to) — At* 6 (1)) (4.14)

= p(l‘()) — Athe(t())

In Eq.(4.14) all the terms on the RHS are known, allowing us
to compute the value of 0 at time (17).

Thus, we obtain a method to compute the new value of 0
based on the current and past time steps.



5. Lecture 5 20/01/2025

fltan) = fl)+acg]
2 92
+&r o . (5.1)
(Ax* 931
R TTd W
flo—ax) =l —axg]
2 92
+&L 2 . (5.2)
_ (A’ o3
31 0 1=Xx0 +
Using Eq.(5.1),
af fx+Ax) - f(x)
— ~ = 4 O(Ax 53
dx X=X( |: Ax :| * ( ) ( )
Similiarly, using Eq.(5.2), one obtain,
df f(x) = flx—Ax)
'l ~ 4
dx X=Xx( |: Ax :| +0(Ax) (5 )
Subtracting Eq.(5.2) from Eq.(5.1), we get,
df | 1f+Ax)+ f(x—Ax) 2
x| o | +o@ae) (5.5)
Adding Eq.(5.1) and Eq.(5.2), we get,
df 1+ Ax) —2f(x)+ fx—Ar) >
praad| (Ax)? | +o@e)
(5.6)
fOetAnt) = )+ A2
X=X
Ax)2 92 f(x,
+GEE (5:7)
Ax)? 93 f(x,
f(x_Axvt) :f(xvt)_mw x=xo
Ax)? 92 f(x,
(L 2 C - (5.8)
(A0)* 97 f(xt)
BT T= I tsz+"'

5.1 Space difference
From Eq.(5.7) and Eq.(5.8) respectively by difference equa-
tion w.r.t 1-direction, say x, we obtain Space difference:

N Ca RS ) R
% e [f(x+AxZ))C—f(x,t)} Loy (5.10)

Subtracting Eq.(5.8) from Eq.(5.7), we get,

g ~ [f(x—i—Ax,t)—Ff(x—Ax,t)
dx — 2Ax

Adding Eq.(5.7) and Eq.(5.8), we get,

| +o@d) 61

d? x+Ax,t) —2f(x, x— Ax,
£y [t b)) =88] g

(5.12)
5.2 Time difference

Similiarly, From Eq.(5.7) and Eq.(5.8) respectively, difference
equation w.r.t time (t), we obtain Time difference:

% L :f(x,t+A2—f(x,t)} Lo 5.13)
% —— :f(x’HAzif(x’t)} +O(A)  (5.14)
‘jTJ: - :f(x,t+At)21tf(x,t—At)] Lo as)
2 -
il[T{ ~ f(x,t—|—At)—Z(fA(;c),zt)+f(x,t—At)}(;_.1(;§At2)

5.3 Explicit form of second order PDE

9°f , ,of | .of _
+Coz +D g +EG TFf=G
(5.17)

°f

°f
dxdy

Cases:

1. If A,B,C,D,E F and G are either constant or function
of x and y, Eq.(5.17) is called Linear PDE.

2. If A,B and C are function of x,y and f, Eq.(5.17) is
called Quasi-linear PDE.

3. If A, B and C are function of x and y only, Eq.(5.17) is
called Semi-linear PDE.

Example: Momentum equation, which is,

ou ou ow ow
o Yo TVay e T

1P
p dx
is a quasi-linear PDE.

5.4 Implicit form of second order PDE

of of I°f *f I°f )

G(f7$aaiyaﬁﬂaiyzaaxay =0 (518)

Eq.(5.18) is Implicit form of PDE. Example: Continuity equa-
tion in 1-D, which is,

dp 9
Py 2o

ot ox u)=0



1-D linear advection equation:

ap ap
§+M$70

in Euler discription.

Dp

“F_o

Dt
in Lagrangian discription, represents change in density (p)
following the motion.



6. Lecture 6 21/01/2025
6.1 1-D Linear Advection equation

af df
—4u—=0 6.1
dt T dt ©.1)
where
f 1is fluid property
u is x-component of fluid velocity
T
S
Xo
x—
Figure 2. Path line or trajectory of fluid element
d
d—: = u = constant (6.2)
Eq.(6.2) is called Characteristic equation.
Integrating Eq.(6.2) w.r.t time, we get:
t
X=Xy —l—/ udt (6.3)
To
Eq.(6.3) is called equation of pathline as shown in Fig2.
Substituting, u = ‘5—;‘ in Eq.(6.1), we obtain:
af dxdf
R R 6.4
dt  dt ot ©4
D
bf_, (6.4)
Dt

Eq.(6.4) implies the property f is conserved following the
motion of fluid element.

6.2 Triangular Property

1. Hyperbolic: 1* order partial equation — 1 family of
characteristic equation in real domain.

2. Hyperbolic: 2"¢ order partial equation — 2 distinct
and real set of characteristic equations.

3. Parabolic: 2"? order partial equation — 2 equal and
real set of characteristic equations.

4. Elliptical: 2"¢ order partial equation — 2 distinct and
complex set of characteristic equations.

"
X0 xo+ [} udt
X jto

Figure 3. Triangular property distribution

u = constant => linear PDE |

%—Ht% =0 S u=u(x) = linear PDE ,
u=u(x,t,f) = quasi-linear PDE
af of _
a(x,t,f)gﬁ—b(x,t,f)a—o (65)

Above Eq.(6.5) is quasi-linear PDE, having characteristic
b

equation in real domain = % =2

f

0 0
a(x,t,f)a—{ —&-b(x,t,f)g =c(x,1,f) (6.6)

Above Eq.(6.6) is semi-linear PDE, having characteristic equa-
tion in real domain.



7. Lecture 7 22/01/2025

General quasi-linear 2"¢ order PDE:

If , ,f O of L of
Agz tBamy H O tDG HEG HFf =G
(7.1)

i.e. A,B,C can be function of x,y, f, % and ‘3—{

To find sign of dicriminant B> — 4AC tells the classification of

equation:

>0, Hyperbolic PDE
=0, Parabolic PDE
<0, Elliptical PDE

—4AC

This is analogus to general equation of conic-section curves.
Which is general by Eq.(7.2)

Ay? + Bxy+Cx*+Dx+Ey+F =0 (7.2)
>0, Hyperbola
—4AC<{ =0, Parabola
<0, Ellipse
d 0
df = 8—fdx+ a—fdy (7.3)
of\ 9*f °f
d(5h) = S+ 5= 50 (7.4)
afy  d%f ’f
d(a—y) = Segy it gy (7.5)

Unknown in Eq.(7.3), Eq.(7.4) and Eq.(7.5) are 21 order
derivatives.
From Eq.(7.1),

Ff L f O df af
(7.6)
From Eq.(7.4),
*f *f af
Jadrt 5o d(ax> (7.7)
From Eq.(7.5),
*f *f af
8x8yd xr ﬁd d(&y) (7.8)
Matrix representation of Eq.(7.6), Eq.(7.7) and Eq.(7.8):
92 _pof _ af
A B C Tﬁ({ D3 — a —Ff+G
de dy 0| |5 = d( %
0 dx dy| | 3 dl o
dy? dy

det(A) =0

Determintant of (A) should be equal to zero, i.e.,

det(A) =0
A(dy)? — B(dxdy) + C(dx)* =
A(%) B(Zy>+C 0 (1.9)

Solution of above Eq.(7.9) are 2 characteristic equations:

dy B++vVB2—4AC
dx 24
if B> — 4AC > 0 =2 distinct Real roots
Family of char. curve € R
Hyperbolic PDE
if B —4AC = 0 =Real and equal roots
1 Family of char. curve € R
Parabolic PDE
if B — 4AC < 0 =Imaginary roots
Family of char. curves € C
Elliptic PDE

Examples:

Incomplete
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