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1. Lecture 1 09/08/2024
• System: Specific chunk of matter we are interested in.
• Surrounding: Everything else in the universe outside of

the system.
• Air parcel: System with the following assumptions:

– Properties within the air parcel are uniform.
– Boundaries are closed, so that matter/mass is not

exchanged with the surroundings.

Question 1.1: How do system interact with sur-
rounding?

• Matter
• Radiation

Question 1.2: Classify system on the basis of how
matter interact with surround?

⇒ We can classify system into 3 types on the basis of
how matter in system interact with it’s surrounding:

• Open
• Closed
• Isolated

Question 1.3: How do we characterize a system?

System Variables

State Variables

T V P · · ·

Process Variables

Heat WD · · ·
such that: f (V,P,T ) = 0 → equation of state

1.1 Equilibrium State
Equilibrium: No change in the system if the surrounding
doesn’t change.

Equilibrium States

Stable Eq.

x

y

Unstable Eq.

x

y

Metastable Eq.

x

y

1.2 Transformation
Transformation Process

Reversible Irriversible

Figure 1. Reversible and Irreversible Process

1.3 Exact and Inexact differentiable
Let z be a function of x and y, exact differentuable equation:

dz =
(

∂ z
∂x

)
dx+

(
∂ z
∂y

)
dy (1)

dz =
∫ f

i
δ z = z(x f ,y f )− z(xi,yi) (2)

∴ dT,dP,dV are exact diffferenrtiable.
δQ,δW are inexact diffferenrtiable.
line intregral: ∮

δ z = 0

→ z is stable variable and it is exact differentiable iff it’s
reversible

∴
∮

dT = 0,
∮

dP = 0,
∮

dq ̸= 0,
∮

dw ̸= 0

1.4 Exntensive and Intrincive variables
• Entrisive: Depends on size of system. E.g. Volume.
• Intrincive: Independent of size of system. E.g. Tem-

perature.

Any variable divided by mass gives intrincive.
For e.g. specific volume (α) = volume

mass .
Similiarly,

p =
P
m
,q =

Q
m
,w =

W
m

1.5 Laws of Thermodynamics
1. 0th law of thermodynamics:

Temperature → Quantity that determines the direction
of heat flow. If two objects are in thermal contact and
there is no net heat transfer, then the system is said to
be in thermal equilibrium.
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2. Lecture 2 14/08/2024
Bulk properties → microscopic properties → which can be
linked to microscopic properties
For e.g. P is exerted due to random motion and colllion of
moleules with each other and on the walls of container.

2.1 Kinetic molecular therory of gases
Conditions:

• Molecules are in random motion.
• Collions between molecules with each other and wall

of container are elastic in nature ensuring no K.E. loss.

Derivation of av. K.E.
Particles travels distance equal to lenght of box (L) with ve-
locity Vx,Vy and Vz.

Particle

elastic collision

x

z

y

L

vx −vx

Force excerted by the molecules on the face:

F =
∆P
∆t

=
∆mv
∆t

= m
∆v
∆t

(3)

Change in velocity

∆vx = vx − (−vx) = 2vx (4)
∆vy = 0 (5)
∆vz = 0 (6)

=⇒ ∆V = 2vx (7)

∴ F =
m(2vx)

∆t
(8)

We also have,

∆t =
2L
vx

(9)

from Eq. (8) and Eq. (9), we get:

F =
m(2v2

x)

2L
=

mv2
x

L
(10)

For N number of molecules and average velocity of all molecules
moving in x-direction v̄x

∴ F =
Nm(v̄2

x)

L
(11)

Pressure (P) exerted on walls of container:

P =
F
A
=

Nm(v̄2
x)

L×L2 =
Nm(v̄2

x)

V
(12)

=⇒ PV = Nm(v̄2
x) (13)

When we consider the velocity of molecules in all directions
(vtot).

v2
tot = v̄2

x + v̄2
y + v̄2

z (14)

=⇒ v̄2
tot = 3v̄2

x (15)

∴ The Pressue(P) becomes:

PV =
1
3

Nmv̄2
tot (16)

3PV = Nmv̄2
tot (17)

3
2

PV =
1
2

Nmv̄2
tot (18)

3
2

PV = N ×
(1

2
mv̄2

tot

)
(19)

=⇒ 3
2

PV = N × (K.E.)av (20)

(21)

Using Ideal gas equation : PV = NkBT ,
where kB is boltzman constant

3
2
(NkBT ) = N × (K.E.)av (22)

=⇒ (K.E.)av =
3
2

kBT (23)

2.2 Ideal gas
1. Molcules are in random motion.
2. During the motion of molecules do not exert force,

except when they collide with each other or the walls
of container. This can also be stated as there is no
force of attraction between mocecules.

3. The collisions between molecules are elastic.
4. Sum of the volume of molecules is negligible comapered

to volume of container.

2.3 Early experiments and laws
1st Law of Gay-Lussac
Increase of volume of an ideal gas at constant pressure is
proportional to incrase in temperature and also to the volume
occupied by the gas at 0oC

dV ∝ V0dθ (24)
dV = αV0dθ (25)
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20

40

0K =−273.15oC

P = const.

θ

V
V = (1+αθ)V0

θ = 273.15K

Figure 2. Plot of V vs. θ

where α is volume coeffient of thermal expansion.

α =
1

dθ

dV
V0

=
1

273
(26)∫ V

V0

dV =
∫

θ

0oC
αV0dθ (27)

V −V0 = αV0(θ −0oC) (28)
⇒V = (1+αθ)V0 (29)

2st Law of Gay-Lussac
An Ideal gas kept at constant volume, then the increase in pres-
sure is proportional to increase in termperature and pressure
at 0oC.

dP ∝ P0dθ (30)
dP = βP0dθ (31)

where β is pressure coeffient of thermal expansion.

β =
1

dθ

dP
P0

=
1

273
(32)∫ P

P0

dP =
∫

θ

0oC
βP0dθ (33)

P−V0 = βP0(θ −0oC) (34)
⇒ P = (1+βθ)P0 (35)



Lecture Notes on Atmospheric Thermodynamics and Cloud Physics — 8/56

3. Lecture 3 16/08/2024

Question 3.1: Why do we need Kinetic theory of
gases?

⇒ Kinetic therory of gases connects microscopic
properties to macroscopic properties of gases.

3.1 Another form of Gay-Lussac’s Law

T (◦C)

V (m3)

A =−273.15oc B B’

C

C’

T ′

V

T

V ′

From similiarity of triangle;

BC
AB

=
B′C′

AB′

V
T

=
V ′

T ′

V
V ′ =

T
T ′

for P is Constant
Similiarlly for Pressure at constant Volume

T (◦C)

P (bar)

A =−273.15oc B B’

C

C’

T ′

P

T

P′

From similiarity of triangle;

BC
AB

=
B′C′

AB′

P
T

=
P′

T ′

P
P′ =

T
T ′

for V is Constant

3.2 Boyle’s Law
Boyle’s Law states that, at constant temperature, the pres-
sure of a given amount of gas is inversely proportional to its
volume. Mathematically, it is expressed as:

P ∝
1
V

(36)

PV = P′V ′ (37)
PV = const. (38)

where P is the pressure of the gas, and V is its volume. This
implies that if the volume of a gas increases, its pressure
decreases, and vice versa, as long as the temperature and the
amount of gas remain constant.

3.3 Avagadro’s Law
Avogadro’s Law states that, at the same temperature and pres-
sure, equal volumes of all gases contain the same number of
molecules. Mathematically, it is expressed as:

V ∝ n (39)

where V is the volume of the gas, and n is the number of moles
of the gas. This implies that the volume of a gas is directly
proportional to the number of moles, provided temperature
and pressure are constant.
For one mole of gas contains 6.023×1023mol−1 of particles.

3.4 Ideal gas Law
System defined by (P,V,T ) undergo change shown in follow-
ing Fig.3

V (m3)

P (bar)

is
oc

ho
ri

c isothermal

(1)

(2)

(3)
(P′,V ′,T ′)

(P1,V ′,T ′)

(P′,V ′,T ′)

Figure 3. Diagram illustrating different thermodynamic
processes in a P-V diagram.
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Apply Gay-Lussac law (1)→ (2):

P1 = P
T ′

T
(40)

Apply Boyle’s law (2)→ (3):

P′V ′ = P1V

from eq.40 we get

P′V ′ =

(
PT ′

T

)
V

after rearranging we get:

P′V ′

T ′ =
PV
T

PV
T

= const

PV = AT

where A = nR∗

R∗ is universal gas constant (8.314JK−1mol−1)
=⇒ PV = nR∗T

(41)

3.5 Van Der Waal’s equation[
P+a

( n
V

)2][
V − (nb)

]
= nR∗T (42)

Where
a = coeff. which characterises the intermolecular forces =
1.35×105Jm3K−1mol−2

b = coeff. which accounts for effective volume occupied by
molecules = 3.64×10−2m3K−1mol−1

When nb → 0 or n
V → 0 Van Der Waal equation → Ideal gas

equation.

3.6 Meteorological form of Ideal gas
Let there be n-kilomols particles/molecules of gas.
Therefore the combination of ith component of the gas can be
given by:

n =
k

∑
i=1

ni (43)

The total mass of sample in kg:

M =
k

∑
i=1

nimi (44)

where mi represents molar mass of ith particle/molecule in a
sample.
Using Ideal gas equation:

PV = nR∗T (45)
PV
M

=
nR∗T

M
(46)

Pα =
n
M

R∗T (47)

since V
M = α , and called specfic volume.

Pα =
∑

k
i=1 ni

∑
k
i=1 nimi

R∗T (48)

Pα =
R∗T
m̄

(49)

⇒ Pα = RdT (50)

where m̄ is mean molar mass and given by ∑
k
i=1 nimi

∑
k
i=1 ni

and

Rd = R∗
m̄ and unit JKg−1K−1

Since we know α = 1
ρ

, where ρ is density of gas.

Pα = RdT (51)
⇒ P = ρRdT (52)

Question 3.2: what is Rd?

⇒ Rd → is a specific gas constant where d stands for
dry air and this constant is not universal, varies with
time and conditons over a particular place.

Rd =
R∗

m̄

and unit JKg−1K−1

3.7 Composition of Earth’s Atmosphere

Gas Fraction/Volume Molecular Mass

N2 78.1% 28.01
O2 20.9% 31.999
Ar 0.93% 39.9

Table 1. Composition of Earth’s Atmosphere.

We haven’t take water vaours(H2O(v)), Carbon diaoxide(CO2)
and Ozone(O3) becasue these gaes are highly variable w.r.t
time and geography.

Question 3.3: Find Rd for Earth Atmosphere?

⇒ Rd =
R∗

m̄

=
8.314×103

28.96
= 0.287085

= 287.085Jkg−1K−1
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4. Lecture 4 19/08/2024
CO2 → radiation trapping process → absorb radiation in IR
region of spectrum.

Question 4.1:

1. Determine the gas constant for the atmo-
sphere of Venus which consists of 95% CO2
and 5% N2 by volume.

2. The mean surface temperature of Venus is
740K as compared to 288K surface tempera-
ture of Earth. The surface pressure on Venus
is 90 times that on Eath. By what factor the
density of near surafce Venusin atmosphere
is greter than the Earth?

⇒ Solution:

1. Mean molar mass of gases of atmosphere of
Venus:

m̄ =
∑

k
i=1 nimi

∑
k
i=1 ni

m̄ = 0.95×46+0.05×28
m̄ = 43.2

Calculate Specific Molar const.(RV ) for Venus:

RV =
R∗

m̄
⇒ RV ≈ 192 JK−1Kg−1

2. Surface Temperature of Venus = TV = 740K
Surface Temperature of Earth = TV = 740K
Surface Pressure of Earth = PE
Surface Pressure of Venus = PV = 90×PE

PV = ρV RV TV

PE = ρV RETE

PV

PE
=

ρV RV TV

ρV RETE

90 =
ρV

ρE
∗ 192

287
∗ 740

288
ρV

ρE
= 52.36

Venus’s atmosphere is 52.36 times densier than
Earth’s atmoshpere.
⇒ ρE = 1.23 kgm−3 and ρV = 65.97 kgm−3

Question 4.2: Why CO2 have radiation trapping
affinity but not gases like N2?

⇒ CO2 has radiation trapping affinity because its
molecular structure allows it to absorb and re-emit
IR radiation, contributing to the greenhouse effect.
This is due to its vibrational modes that change the
molecule’s dipole moment. In contrast, N2, with its
symmetric diatomic structure, cannot absorb infrared
radiation effectively, as its vibrations do not change
the dipole moment, making it non-contributory to the
greenhouse effect.

4.1 Pressure
Units of Pressure
Pressure are usually expressed in thefollwing units:

1 bar = 1.013 × 105 Pa
105 Pa = 1000hPa = 1000 mbar

Question 4.3: Why does ozone layer depletion hap-
pen primarily over the South Pole in Antarctica?

⇒ Ozone layer depletion happen primarily over the
South Pole becasue of following reasons:

• Polar Stratospheric Clouds (PSCs): During
the Antarctic winter, temperatures drop be-
low −75◦C, leading to the formation of PSCs.
These clouds facilitate chemical reactions that
convert inactive chlorine compounds into reac-
tive forms, which destroy ozone.

• Isolation of the Polar Vortex: The strong po-
lar vortex over Antarctica isolates air, keeping
temperatures low and trapping ozone-depleting
chemicals within the vortex.

• Sunlight and Ozone Destruction: In Antarctic
spring, returning sunlight provides energy for
reactions between chlorine radicals and ozone,
leading to significant ozone depletion and the
formation of the ”ozone hole.”

• Comparison with the Arctic: The Arctic has
a weaker and less stable polar vortex, resulting
in less dramatic ozone depletion compared to
Antarctica.

4.2 Mass of the Atmosphere
At any point in the atmosphere, atmosphere above will exert a
downward force due to gravitational force

F = ρg (53)

F =
∫

∞

0
ρgdz (54)
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We know P = Force/(unit area), assuming gravity g0 remain
constant, we get:

⇒ Ps = g0

∫
∞

0
pdz (55)

where Ps is vertically integrated and have unit kgm−2

Question 4.4: Globally average surface pressure of
earth is 985hpa. Estimate mass of atmossphere.

⇒ Given 985hpa = 985×102Pa
surface area(sa) = 4πr2

where r is radius of earth = 6400km
we know, pressure(p) = f orce

sa

p =
mg

4πr2

986×102 =
m×9.81

4×π × (6400×103)2

m = 5.168172908×1018kg

∴ The approximate mass of atmosphere is equal to
5.1708×1015

Question 4.5: The average atmospheric pressure
on surface of Mars is 6hPa and raduis 3400km.
Find mass of Mars.

⇒ Given Surface pressure of Mars P = 6hPa = 6×
102 pa
Radius of MarsR = 3400km = 3.4×106m
surface area(sa) = 4πr2

where r is radius of earth.
we know, pressure(p) = f orce

sa

p =
mg

4πr2

986×102 =
m×9.81

4×π × (6400×103)2

m = 5.168172908×1018kg

∴ The approximate mass of atmosphere is equal to
5.168172908×1018kg
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5. Lecture 5 21/08/2024
In previous lecture, We got equation for Ideal gas Eq.(52),
which only deals with dry air.
We didn’t incooperated moisture!

(A)
Dry Air

(P, ρd , Rd , T)

(B)
Water Vapour
(Pv, ρv, Rv, T)

where Pv is vapour pressure and given by

Pv = ρvRvT (56)

Rv =
R∗

m̄
=

8.314×103

18.01
= 461.63JK−1kg−1 (57)

Note: Water vapour is not same as moisture, misture is mix-
ture of air and water vapour

5.1 Dalton’s law of partial pressure
Dalton’s law of partial pressure states that total pressure ex-
erted by the mixture of gas is equal to the sum of partial
pressure exerted by individual contituent at a given tempera-
ture.

P = Pd + e (58)

Where

P = Total pressure excerted by all gases in mixture
Pd = Pressure exerted by dry air

e = Pv = Vapour pressure

Substituting Eq.(52) and Eq.(56) in Eq.(58), we get:

P = ρdRdT +ρvRvT (59)
P = (ρdRd +ρvRv)T (60)

5.2 Humidity
We define humidity using following parameters:

1. Mixing ratio:

ω =
Mass of water vapour

Mass of dry air
=

Mv

Md
(61)

=
Densityof water vapour

Density of dry air
=

ρv

ρd
(62)

Unit of mixing ratio is g/Kg

2. Specific humidity:

ω =
Mass of water vapour

Mass of dry air+Mass of water vapour
(63)

=
Mv

Md
(64)

=
Density of water vapour

Density of dry air+Density of water vapour
(65)

=
ρv

ρd +ρv
(66)

=
ρv

ρ
(67)

w ≈ q, ∵ mass of water vapour ≪ masss of dry air

ω =
ρv

ρd
(68)

=
e/RvT

Pd/RdT
(69)

=
eε

Pd
(70)

=
eε

P− e
(71)

≈ eε

P
(72)

where ε = Rd
Rv

= 0.621
Similiary,

q =
ρv

ρv +ρd

=
eε

P− (1− ε)e

≈ eε

P
q ≈ w

5.3 Ideal gas equation for moist gas
Total pressure

P = Pd + e

= ρdRdT +ρvRvT

= ρdRdT
[

1+
ρvRv

ρdRd

]
= ρdRdT

[
1+

ρv

ρd
· Rv

Rd

]
= ρdRdT

[
1+

ρv

ρd
· 1

ε

]
= ρdRdT

[
1−

(
1− 1

ε

)
ρv

ρ

]

∴ P = ρdRdT
[

1−
(

1− 1
ε

)
·q
]

(73)
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Virtual Temerature

⇒ Tv =
P

ρdRd
= T

[
1−

(
1− 1

ε

)
·q
]

(74)

Therefore from Eq.(73) and Eq.(74), we get:

P = ρdRdTv (75)

(A)
Dry Air

(P, ρd , Rd , T)

(B)
Moist air parcel
(Pv, ρv, Rv, T)

ρd > ρm
△−→ ρd = ρm, where △ represents heat.

Question 5.1: On a summer day the AC breaks
down and the air in the classroom becomes warm
and muggy with a vapour pressure of 20 hPa and
a temperature of 25◦C.
a. If the volume of the classroom is 40m3. How
much water is present in the room in vapour form?
b. If pressure of the room is 900hPa then what is
virtual temerpature of the air?

⇒ a. We have,

Pv = ρvRvT

20×102 = ρv ×461.62×298

ρv = 0.0145kg/m3

m
V

= 0.0145

m
40

= 0.0145

m ≈ 0.58149kg

∴ Amount of water vapour in room is 0.58148976kg.

⇒ b. Given, P = 900hPa = 90000Pa
Let Tv be the virtual temperature. We know:

Tv = T
(

1+0.61
Pv

P

)
Substituting the values:

Tv = 298
(

1+0.61× 2000
90000

)
Tv = 298×1.01356
Tv ≈ 302.04K

∴ The virtual temperature of the air is approximately
302.04K.
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6. Lecture 6 28/08/2024
6.1 Archimedes Principle
Archimedes’ principle states that any object completely or
partially submerged in a fluid (liquid or gas) is buoyed up by a
force equal to the weight of the fluid that the object displaces.

Upward force exerted by the fluid = weight of
the fluid displaced by the object

6.2 Buoyancy
Buoyancy is the upward force exerted by a fluid (liquid or gas)
that opposes the weight of an object submerged in it.

ρ ′

ρ,M

Net force acting on mass(M) and density(ρ) submerged in
fluid of density(ρ ′) is given by:

FB = ρ
′V g−Mg (76)

= ρ
′V g−ρV g (77)

= (ρ ′−ρ)V g (78)

Dividing equation with M on both side,

FB

M
=

(ρ ′−ρ)V g
M

(79)

fB =
(ρ ′−ρ)V g

ρV
(80)

=
(

ρ ′

ρ
−1

)
g (81)

If Buoyant force per unit mass ( fB),

fB > 0 → upward force
fB < 0 → downward force

We don’t measure density in real case scenario, so we need to
convert the equation in the useful form.
Assume pressure inside air parcel and surrounding equal and
process to be reversible.
Using Ideal gas equation,

P = ρRdTv (82)
P = ρ

′RdT ′
v (83)

Substituting equation Eq.(82) & (83) in Eq.(81), we get:

fB =

( P
RdT ′

v
− P

RdTv

)
P

RdT ′
v

g (84)

⇒ fB =
(Tv −T ′

v )

T ′
v

g (85)

where Tv and T ′
v are virtual temperture of of parcel and fluid

respectively.

fB > 0 → Tv > T ′
v → upward force

fB < 0 → Tv < T ′
v → downward force

fB = 0 → Tv = T ′
v → no net force

Question 6.1: A parcel ofair has a temperature
of 29◦C and specific humidity of 24g/kg. It is em-
bedded in the environment having termperature of
30◦C and specific humidity of 5g/kg
a. What is vertical acceleration?
b. If there are no forces acting on in, how long
would take for thep parcel to raise 10m from
starting position?

⇒ a. Given Tv,a = 29◦C = 302K and Tv,s = 30◦C =
303K,
qa = R.H.a = 24g/kg,
qs = R.H.s = 5g/kg,
We know,

Tv,a = Ta(1+0.61qa)

= 302(1+0.61×24×10−3)

= 306.42128K

Tv,s = Ts(1+0.61qs)

= 303(1+0.61×5×10−3)

= 303.92415K

Buoyant force per unit mass fB,

fB =
(Tv,a −Tv,s

Tv,s

)
g

=
(306.42128−303.92415

303.92415

)
×9.81

= 0.0806m/s2

∴ Vertical accerleration due to buoyant force is
0.0806m/s2.

⇒ b. Given Height h = 10m,
Vertical accerlation a = fB = 0.0806m/s2

Using equation of motion:

s =
1
2

at2

10 =
1
2
×0.0806× t2

t = 15.7524s

∴ Time taken by parcel to rasie 10m due to buoyant
force is 15.75 seconds.
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6.3 Hydrostatic equation

x

y

z

z

z+dz

ρ

A

A

Fdown

Fup Fg

1. The downward force due to gravity:

Fg = mg = ρ(Aδ z)g (86)

2. The upward force due to atmosphere force acting on
the bottom of the slab is given by:

Fup = Ap(z) (87)

3. The downward force acting on parcel:

Fdown = Ap(z+dz) (88)

∴ Net upward fore will be given by Eq.(90)

F = Fup −Fdown −Fg (89)
= Ap(z)−Ap(z+dz)−ρ(Aδ z)g (90)

Hence, Upward acccleration will be:

a =
F

ρAδ z
(91)

=
Ap(z)−Ap(z+δ z)− (Aδ z)ρg

ρAδ z
(92)

=− 1
ρ

[ p(z+δ z)− p(z)
δ z

]
−g (93)

Taking limδ z→0

⇒ a+g =− 1
ρ

d p
dz

(94)

Eq.(94) is called Hydrostatic equation.

Question 6.2: Velocity of hyricene is 10m/s and
time taken 10min find acceleration.

⇒ Acceleration a = v
t =

10
10×60 = 10

600 ≈ 0.0167

From the above example question 6.2 we can infer that a+g≈
g,
∴ we can rewrite Hydrostatic equation as following Eq.(95):

⇒ g =− 1
ρ

dP
dz

(95)

This is called Hydrostatication approximation.
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7. Lecture 7 29/08/2024
7.1 Ideal gas equation with Hydostatic equation
From Ideal gas equation:

P = ρRdTv (96)

ρ =
P

RdTv
(97)

Substitute ρ in hydrostactic Eq.(95), we get:

g =−RdTv

P
∂P
∂ z

(98)

∂P
∂ z

=− P
RdTv

g (99)

1
P

∂P
∂ z

=− g
RdTv

(100)

∂ lnP
∂ z

=− g
RdTv

(101)

The rate of change of logarithm of pressure is Inversely pro-
portional to temperature and does not depend on pressure.

7.2 Geopotential
Geopotential at any point in the atmosohere is defined as the
work done against the gravitational field to raise a mass of
1kg from sea level to that point,
Represnted by Eq.(102) and has unit Jkg−1

dφ = gdz (102)

From hydrostatic equation Eq.(94),

d p =−ρgdz (103)

gdz =− 1
ρ

d p (104)

gdz =−αd p (105)

where α is specific volume.
Intergrating Eq.(102), we get:∫

φ(z)

0
dφ =

∫ z

0
gdz (106)

φ(z) =
∫ z

0
gdz (107)

Let g0 be accerleration due to gravity averaged over the sur-
face.

φ(z)
g0

=
∫ z

0

g
g0

dz (108)

⇒ Z =
φ(z)
g0

(109)

The Z in Eq.(109) is called Geopotential height.

p = ρRdTv (110)
pα = RdTv (111)

α =
RdTv

p
(112)

z (km) Z (km) g (m/s2)
0 0 9.81
1 1 9.80

10 9.99 9.77
100 98.87 9.50
500 46.36 8.43

Table 2. Deviation of vaules of g for Geometric Height(z),
Geopotential Height(Z)

dφ = gdz =−αd p (113)

dφ =−RdTv

p
d p (114)

Integrating from both sides, we get:

∫
φ2

φ1

dφ =
∫ P2

P1

−RdTv

p
d p (115)

φ2 −φ1 =−Rd

∫ P2

P1

Tv
d p
p

(116)

Dividing both side with g0, we get:

(φ2 −φ1)

g0
=−Rd

g0

∫ P2

P1

Tv
d p
p

(117)

(Z2 −Z1) =−Rd

g0

∫ P2

P1

Tv
d p
p

(118)

By assuming isothermal atmosphere

(Z2 −Z1) =−Rd

g0

∫ P2

P1

T̄v
d p
p

(119)

(Z2 −Z1) =−Rd

g0
T̄v ln

(d p
p

)
(120)

⇒ (Z2 −Z1) =−H ln
(d p

p

)
(121)

Where T̄v is average temperature of atmosphere taken over
geopotnetial (φ1&φ2) and H is scale height giev by Eq.(122):

H =
RdTv

g0
(122)

Scale height H is defined as height at which the pressure
reduces to 1/e times the surface pressure. It is around 7.8km
for Earth’s atmosphere.
Eq.(121) is called Hypsometric equation.
Simplifing Eq.(121), we get:

P2 = P1e−
(Z2−Z1)

H (123)

⇒ P = P0e−
(Z2−Z1)

H (124)
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Question 7.1:

⇒ Solution,

(Z2 −Z1) =−Rd

g0
T̄v ln

(d p
p

)
=−287×255

9.81
ln

P2

P1

=−7.4ln
P2

P1
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8. Lecture 8 30/08/2024

Question 8.1: On May 20, 2020 tropical cy-
clone Ampan of centre pressure at ocean surface
dropped to 920hPa. The surrounding region away
from influence of centre of cyclone had mean sea
level pressure of 1010hPa. The height depres-
sion associtated with centre of cyclone vanished
at height of pressure level of 150hPa. If the mean
virtual temperature of the surrounding between
the surface at 150hPa was −10◦C. What was the
corresponding mean virtual temperature in the
centre of storm?

⇒ Given data:

P1 = 1010hPa = 101000Pa

P2 = 920hPa = 92000Pa

P3 = 150hPa = 15000Pa

Tv,surr =−10◦C = 263.15K

Rd = 287J/(kgK)

g0 = 9.81m/s2

⇒ Height difference calculation in the surrounding
air:

(Z2 −Z1) =
RdTv,surr

g0
ln
(

P1

P3

)
=

287×263.15
9.81

ln
(

101000
15000

)
= 7701.43×1.906
= 14681.92m

⇒ Solution for mean virtual temperature at the center
of the storm:

(Z2 −Z1) =−Rd

g0
T̄v,center ln

(
P3

P2

)
14681.92 =− 287

9.81
T̄v,center ln

(
15000
92000

)
T̄v,center =−14681.92×9.81

287ln
( 15000

92000

)
=− 14681.92×9.81

287× (−1.7749)

=
144040.6
−509.4613

= 282.72K
Tv,center ≈ 282.72−273.15
Tv,center ≈ 9.57◦C

Question 8.2: Calculate the thickness of layer be-
tween 1000hPa and 500hPa pressure surface.
a. At point in tropics where Tv is 15◦C
b. At point in polar where Tv is −40◦C

Solution ⇒ a.

(Z2 −Z1) =−Rd

g0
T̄v ln

(d p
p

)
=

287×288K
9.81m/s2 ln

1000hPa
500hPa

= 5840.2419km

⇒ b.

(Z2 −Z1) =−Rd

g0
T̄v ln

(d p
p

)
=

287×233K
9.81m/s2 ln

1000hPa
500hPa

= 4724.9179km

Pressure profiles in the idealized atmosphere
8.1 Constant density atmosphere
Assume atmosphere is at hydrostatic balance and density ρ to
be constant.

dP =−ρgdz (125)∫ P(z)

P(0)
dP =−

∫ z

0
ρgdz (126)

p(z)− p(0) =−ρgz (127)

Substituting values in above eqaution, we obtain:

(0−101.3) =−1.23×9.8× z (128)
z ≈ 8.3952km (129)

Using Ideal gas equation, substitute P,

d(ρRT ) =−ρgdz (130)
RdT =−gdz (131)

dT =− g
R

dz (132)

T (z)−T (0) =
g
R
(z−0) (133)

T (z) = T (0)− g
R

z (134)

T (z) = T (0)−0.0341z (135)

T (z) = T (0)−34.1z (136)

where 34.1 constant have an unit of ◦C/km

⇒ Γ =−dT
dz

=− g
R
=−34.1◦C/km (137)
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This is Ideal/theoritical value, but actual/pratical value for
Γ is 6.5◦/km because of phenomenon called auto-convective
lapse rate i.e. ρ varies with altitude, and warm are and cold
air do vertical circulation.

8.2 Constant temperature atmosphere
Assume atmosphere is at hydrostatic balance and Temperature
T to be constant.

dP =−ρgdz (138)
dρRT =−ρgdz (139)

p(z)− p(0) =−ρgdz (140)
RT dρ =−ρgdz (141)

dρ

ρ
=− g

RT
dz (142)

lnρ|ρ2
ρ1 =− g

RT
z|z0 (143)

⇒ ln
ρ2

ρ1
=− g

RT
z (144)

8.3 Constant lapse rate atmosphere

T = T0 −Γz (145)
dP =−ρgdz (146)
dP
dz

=− Pg
RT

(147)

dP
dz

=− Pg
R(T0 −Γz)

(148)

1
P

dP =− gdz
R(T0 −Γz)

(149)∫ P2

P1

1
P

dP =− g
R

∫ z

0

dz
(T0 −Γz)

(150)

⇒ ln
P2

P1
=− g

RΓz
ln
(T0 −Γz

T0

)
(151)
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9. Lecture 9 04/09/2024
9.1 1st law of thermodynamics and it’s application
Pressure-volume work
Work done δw by any force F to displace object with diplace-
ment ds is equal to:

δw = F ·ds (152)

Incremental Work done by Force F to increase the volume
will be given as follows:

δw = F ·ds (153)
= PA ·ds (154)
= PdV (155)

Assuming Pressure P constant at each step, and process is
slow, incremental, i.e, reversible.

ds

Area(A)

Piston

V
V+∆V

Pressure (P)

Fgas Fgas

Fgas Fgas

Volume (V)

Pressure (P)

A

ds

P(V )

Work done:
∫

PdV
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10. Lecture 10 05/09/2024
10.1 . 1st law of thermodynamics and it’s application

∆U = Q−W (156)

Mechanical work

δw = F ·ds (157)

Pressure-volume work

δw = PA ·ds (158)
δw = PdV (159)

w =
∫ f

i
PdV (160)

V (Volume)

P (Pressure)

w =
∫ f

i PdV
i

f

w =
∫ f

i
PdV (161)

w =
∫ f

i
PdV +

∫ i

f
PdV (162)

w =
[∫ f

i
PdV

]
1
−
[∫ f

i
PdV

]
2

(163)

w ̸= 0 (164)

⇒
∮

C
w =

∮
C

Pdv ̸= 0 (165)

w =
∫ f

i
PdV (166)

w =
∫ f

i
PdV +

∫ i

f
PdV (167)

w =
[∫ f

i
PdV

]
1
−
[∫ f

i
PdV

]
2

(168)

w = 0 (169)

⇒
∮

C
w =

∮
C

Pdv = 0 (170)

δw = PAds (171)
δw = F ·ds (172)
δw
dt

= m
dv
dt

ds
dt

(173)

δw
dt

= mv
dv
dt

(174)

δw
dt

=
d
dt

(1
2

mv2
)

(175)

⇒ δw
dt

=
d
dt
(K.E.) (176)

Formulation of 1st law of thermodynamics
Case 1: Heating

∆U = Q

Case 2: By doing work

∆U =−W

From case 1 and 2 for we can write 1st law of thermodynamics
as:

∆U = Q−W (177)
δq = du+δw (178)

↑ Heat ∆ ↑

Ti → Tf

Ti < Tf

In terms of Intensive parameters

δq = du+ pdα (179)

1. Pressuer-volume wok done by a system = reduction in
internal energy + heat supplied by the environment.

2. Pressuer-volume wok done on a system = increase in
internal energy + heat transfered to the environment.

10.2 . Heat capacity
δq
dT

=C (180)

Unit Jk−1Kg−1

Ideal gas equation:
Pα = RdT

Case 1: Increase in volume (If pressure is kept constant →
Isobaric process)
Case 2: Increase in pressure (If volume is kept constant →
Isochoric process)
Case 3: Combination of above the both cases. (i.e. increase
in both pressure and volume)
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10.3 . Heat capacity at constant volume
From Eq.(179)

δq = du+ pdα (181)
δq = du (182)
δq =CvdT (183)

Cv =
(

δq
dT

)
α=cont

(184)

Cv =
( du

dT

)
α=cont

(185)

⇒ du =Cvdt (186)

From Kinetic theory of gas

U =
3
2

Pα =
3
2

RdT

For monoatomic gas:

Cv =
du
dt

=
3
2

Rd = 430.5Jk−1kg−1

For diatomic gas:

Cv =
du
dt

=
5
2

Rd = 718Jk−1kg−1
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11. Lecture 11 06/09/2024
11.1 . Specific heat capacity
Specific heat = δq

dT

δq = du+δw (187)
δq = du+ pdα (188)

11.2 . Specific heat at constant volume
Volume(V ) is constant, i.e., specific density(α) = constant
∴ dα = 0

δq = du+ pdα (189)
δq = du (190)
δq =CvdT (191)

Cv =
(

δq
dT

)
α=cont

(192)

Cv =
( du

dT

)
α=cont

(193)

du =Cvdt (194)

Hence,

⇒ δq =Cvdt +Pdα (195)

Cv =

{
3
2 Rd for monoatomic gas,
5
2 Rd for diatomic gas.

Rotational K.E. is significant for diaatomic gas but not for
monoatomic gas.

r

Monoatomic Gas

d

r

Diatomic Gas
d

r

Diatomic Gas

11.3 . Specific heat at constant pressure
Pressure(P) is constant ∴ dP = 0
From Ideal gas eqaution

P = RdT (196)
dPα = Pdα +αdP (197)

Pdα +αdP = d(RdT ) (198)
Pdα +αdP = RddT (199)

Pdα = RddT −αdP (200)

δq = du+ pdα (201)
δq = du (202)
δq =CvdT (203)

Cv =
(

δq
dT

)
α=cont

(204)

Cv =
( du

dT

)
α=cont

(205)

du =Cvdt (206)

From Eq.(195) and Eq.(200)

δq =CvdT +RddT −αdP (207)
δq = (Cv +Rd)dT −αdP (208)

⇒ δq =CpdT −αdP (209)

Cp =

{
717.5J ·kg−1 ·K−1 for monoatomic gas
1005J ·kg−1 ·K−1 for diatomic gas

11.4 . Special forms of 1st law of thermodynamics
I. Isobaric process

δq =CpdT (210)

=
(Cp

Cv

)
CvdT (211)

=
(Cp

Cv

)
dU (212)

= γdU (213)

II. Isothermal process

δq =−αdP = Pdα = δw (214)

q =
∫ f

i
αdP (215)

=
∫ f

i

RdT
P

dP (216)

=−RdT lnP| f
i (217)

= RdT lnα| f
i = w (218)

III. Isochoric process

δq =CvdT = dudα = 0 (219)

q =
∫ f

i
CvdT (220)

=Cv(Tf −Ti) (221)
=Cv∆T =U (222)

IV. Adiabatic process

0 =CvdT +Pα (223)
0 =CpdT −Pα (224)
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Question 11.1: For each of the following conditions
compute:
i. Mechanical work done by the sample of air.
ii. Heat added to the sample.
a. Isothermal cpmpression to 1/5th of it’s original
volume at 15◦C.
b. Isobaric heating from 0◦C to 20◦C.
c. Adiabatic expansion to 5 times it’s orignanal
volume within initial temperature of 20◦C.

⇒ Solution:
a. For Isothermal process

q = w = RdT ln
( 1

V

)∣∣∣V/5

V

= 287×288×T ln(5)
= 133.0297kJ

b. For Isobaric heating

q =CpdT

=
7
2

Rd ×∆T

=
7
2
×287×20

= 19740J

≈ 20kJ

c. Adiabatic heating

w =
P1V1 −P2V2

γ −1

=
Rd(T1 −T2)

γ −1

=
287× (293− 293

5 )
7
5 −1

= 168.182kJ

q = 0J
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12. Lecture 12 11/09/2024
12.1 . Poisson’s equation for adiabatic transforma-

tion
For adiabatic processes:

dq = 0 (225)
cpdT = αdP (226)

cp
dT
T

= α
dP
T

(227)

From Ideal gas equations:

Pα = RdT (228)

α =
RdT

P
(229)

cp
dT
T

=
RdT

P
dP
T

(230)

cp
dT
T

= Rd
dP
P

(231)

Integrating from an initial termerature T0 and pressure P0 to
arbitary temperature and pressure T and P, we get:∫ T

T0

cp
dT
T

=
∫ P

P0

Rd
dP
P

(232)

cp ln
( T

T0

)
= Rd ln

( P
P0

)
(233)( T

T0

)cp
=
( P

P0

)Rd
(234)

T0 = T
( P

P0

) Rd
cp (235)

⇒ θ = T
(1000

P0

)k
(236)

where constant k is Rd/cp which is equal to 0.286, P0 =
1000hPa which is near surface pressure and θ is known
as potential temperature.
Potential temperature()θ ) in Eq.(236) is defined as a adia-
baticatly compressed parcel is bought to 1000hPa isobar (near
surface) from that leveland temperature is measure.

Air parcel

Adiabatic compression

T1

T0

P2

P1

P0 = 1000hPa

Let us assume that

θ = AT P−k (237)

where k is Rd/Cp = 0.286.

Taking logarithm on both sides

d(lnθ) = d(lnA)+d(lnT )− kd(lnP) (238)

d(lnθ) = d(lnT )− Rd

Cp
d(lnP) (239)

where A = (P0)
k = (1000)0.286

Consider 1st law of thermodynamics

δq =CpdT −αdP (240)
δq
T

=Cp
dT
T

−α
dP
T

(241)

δq
CpT

=
dT
T

− RdT dP
CpPT

(242)

δq
CpT

=
dT
T

− RddP
CpP

(243)

δq
CpT

= d(lnT )− Rd

Cp
d(lnP) (244)

from Eq.(239) and Eq.(244)

d(lnθ) =
δq

CpT
(245)

For adiabatic process δq = 0

d(lnθ) = 0 (246)

θ is constant, conserved for adiabatic process.
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Question 12.1: Transcontinental airline fly at an
altitude of 12km where the temperature outside is
−55◦C and the pressure is approxiately 200hPa
a. Compute the potential temperature of air at this
altitude.
b. Cabin pressure is typically mentioned of 750hPa
corresponding to pressure alttitude of 2.24km.
when outside air is adiabatically compressed to
cabin pressure. Compute the air temperature if no
corrective operation where taken.

⇒ Solution:
a. Potential temperature of air

θ = T
(1000

P

)k

= 218
(1000

200

)0.286

= 218(5)0.286

= 345.4317K

= 72.43◦C

b. Potential temperature of air

θ = T
(1000

P

)k

= 218
(750

200

)0.286

= 218
(4

3

)0.286

= 318.14K

= 45◦C
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13. Lecture 13 12/09/2024
13.1 . Adiabatic transformation - Poisson’s equation

1. Case I.

CpdT = αdP (247)

Cp
dT
T

= Rd
dP
P

(248)

dT
T

=
(Cp −Cv

Cp

)dP
P

(249)

dT
T

=
(

1− Cv

Cp

)dP
P

(250)

dT
T

=
(

1− 1
γ

)dP
P

(251)

dT
T

=
(

γ −1
γ

)dP
P

(252)

lnT =
(

γ −1
γ

)
lnP+ lnC (253)

T =CP
(

γ−1
γ

)
(254)

T P
(

1−γ

γ

)
=C (255)

2. Case II.

CvdT =−Pdα (256)

Cv
dT
T

=−Rd
dα

α
(257)

dT
T

=−
(Cp −Cv

Cv

)dα

α
(258)

dT
T

=
(

1−
Cp

Cv

)dα

α
(259)

dT
T

=
(

1− γ

)dα

α
(260)

lnT = (1− γ) lnα + lnC (261)

lnT = lnα
(1−γ)+ lnC (262)

T =Cα
(1−γ) (263)

T α
(γ−1) =C (264)

13.2 . Adiabatic Lapse Rate
Adiabatic Lapse Rate (LR)

Dry Adiabatic LR

Phase change of moisture is absent

Moist Adiabatic LR

Note: Moisture is present in dry air parcel but it is assumed
that it does not show any phase chage.

13.3 . Dry Adiabatic Lapse Rate (DALR)
Using the 1st law of thermodynamics

δq =CpdT −αdP (265)

Adiabatic process:

δq = 0 (266)
CpdT = αdP (267)

Lapse rate:

dT
dz

=
dT
dP

· dP
dz

(268)

From Eq.(267) and (268)

dT
dz

=
RdT
CpP

· dP
dz

(269)

Note: Hydrostatic balance is applied to surrounding not on
parcel.
Appling hydrostatic approximaion, the pressure of unconfined
air pacel is same as that of the envirnoment (i.e. P = P′), we
get:

dP
dz

=
dP′

dz
= ρ

′g =− P′g
RdT ′ (270)

where P′ and T ′ are ambient pressure and temperature.
From Eq.(267), Eq.(268) and Eq.(270)

dT
dz

=
RdT
CpP

·
(
− P′g

RdT ′

)
(271)

dT
dz

=
g

Cp
·
(
− T P′

T ′P

)
(272)

dT
dz

=− g
Cp

( T
T ′

)
(273)

Γd =−dT
dz

=
g

Cp

( T
T ′

)
(274)

Γd =−dT
dz

≈ g
Cp

(275)

Γd =−dT
dz

≈ 9.8×10−3◦C/m (276)

⇒ Γd =−dT
dz

≈ 9.8◦C/km (277)

where Γd is Dry Adiabatic Lapse Rate (DALR) which is
aproximately equal to 9.8◦C/km, also T and T ′ are compara-
bly equal.

13.4 . Possion’s equations
From Eq.(236)

θ = T
(1000

P

)k
(278)

⇒ Pk =
(Pk

0
θ

)
T (279)
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14. Lecture 14 20/09/2024
14.1 . Heat Engines

1. Construct closed cycle of compression and expansion
to produce net work.

2. Production of work required expenditure of internal
energy on heat supplied by the environment.

From 1st law of thermodynamics

δq = du+δw (280)∮
δq =

∮
du+

∮
δw (281)∮

δq =
∮ 0

��du+
∮

δw ( ∵ ui = u f ) (282)∮
δq =

∮
δw (283)

⇒ qnet = wnet (Theoritically) (284)

In theory, the equality qnet = wnet arises from the assumption
of a perfect heat engine operating in a closed cycle. This ide-
alized scenario implies that all the heat energy supplied to the
engine is converted into mechanical work without any losses
due to friction, heat dissipation, or other irreversibilities.
However, no physical engine can achieve this ideal efficiency.
Real engines inevitably encounter energy losses through vari-
ous mechanisms, such as:

1. Heat Loss: Part of the input heat is lost to the sur-
roundings, decreasing the effective energy available for
work.

2. Friction: Mechanical losses due to friction in mov-
ing parts result in energy dissipation as heat, further
reducing the net work output.

3. Non-ideal Processes: Real thermodynamic processes
often involve irreversible changes, which lead to addi-
tional energy losses that are not accounted for in the
ideal model.

Thus, while qnet = wnet serves as a theoretical benchmark,
practical engines operate with efficiencies below this ideal,
governed by real-world constraints and inefficiencies.

14.2 . Efficiency
Efficiency of heat engine,

η =
qin −qout

qin
=

w
qin

(285)

14.3 . Carnot Cycle
The Carnot cycle consists of the following four steps, whcih
can be seen in figure:

1. Step 1: Reversible isothermal expansion.
2. Step 2: Reversible adiabatic expansion.

Figure 4. Carnot Cycle

3. Step 3: Reversible isothermal compression.
4. Step 4: Reversible adiabatic compression.

Step 1: Reversible Isothermal Expansion
During this process, the temperature remains constant, i.e.,
∆T = 0, which implies that the internal energy change is zero,
∆u = 0.
The work done during this process is given by:

w12 =
∫

δw =
∫

α2

α1

pdα (286)

=
∫

α2

α1

RdT1

α
dα (287)

= RdT1 ln
α2

α1
(288)

Since du = 0 (because dT = 0), we have:

du12 = dw12 ⇒ Q12 =W12

Step 2: Reversible Adiabatic Expansion
In this step, the gas expands without heat exchange, leading
to a change in internal energy. The change in internal energy
is given by:

∆u23 =Cv(T2 −T1) (289)
−∆u23 = w23 (290)

w23 =−Cv(T2 −T1) (291)

Step 3: Reversible Isothermal Compression
In this process, the gas is compressed isothermally, maintain-
ing a constant temperature:

w34 =
∫

δw =
∫

α4

α3

pdα (292)

=
∫

α4

α3

RdT2

α
dα (293)

= RdT2 ln
α4

α3
(294)
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Step 4: Reversible Adiabatic Compression
During this step, the gas is compressed adiabatically, resulting
in a temperature increase and work done on the gas. The work
can be expressed as:

w41 =Cv(T2 −T1) (295)

From Poisson’s equation (236), we have the following rela-
tions for the Carnot cycle:

T1α
γ−1
2 = T2α

γ−1
3 (296)

T1

T2
=

(
α3

α2

)γ−1

(297)

Similarly, for the other isentropic process:

T1α
γ−1
1 = T2α

γ−1
4 (298)

T1

T2
=

(
α4

α1

)γ−1

(299)

From these two equations, we can equate the temperature
ratios:

(
α3

α2

)γ−1

=

(
α4

α1

)γ−1

(300)

α3

α4
=

α2

α1
(301)

Total Work:
From Eq.(288), (291), (294), and (295), the total work done
in the cycle is:

WTotal = w12 +w23 +w34 +w41 (302)

= RdT1 ln
α2

α1
−Cv(T2 −T1)+ (303)

RdT2 ln
α4

α3
+Cv(T2 −T1) (304)

= RdT1 ln
α2

α1
+RdT2 ln

α4

α3
(305)

= Rd

[
T1 ln

α2

α1
+T2 ln

α4

α3

]
(306)

= Rd(T1 −T2) ln
(

α2

α1

)
From Eq.(301) (307)

Finding the effeincy of carnot cycle using Eq.(285) and Eq.(307)

η =
Q1 +Q2

Q1
(308)

= 1+
Q2

Q1
(309)

= 1+
RdT2 ln α3

α4

RdT1 ln α2
α1

(310)

= 1−
T2 ln α2

α1

T1 ln α2
α1

(311)

⇒ η = 1− T2

T1
(312)

The temperature at which carnot engine becomes 100% effi-
cient (i.e.η = 1) is called Absolute temeperature (0K)
In real world scenarios 0K is not acheivable and there is no
process which is ideally reversible.
//

Question 14.1: For a potential temperature of
290K compute the corresponding temperature at
700hPa and 500hPa. Sketch the corresponding adi-
abat in skew-T diagram.

⇒ θ = T
(

1000
P0

)k
,where k = Rd

Cp
= 287

1004 = 0.286

T = θ

(
P0

1000

)k

T1 = θ

(
700
1000

)0.286
= 261.87K ≈−11.2◦C

T2 = θ

(
500
1000

)0.286
= 237.88K ≈−35.15◦C

14.4 . Skew T - log P diagram
Skew-T plot1 shows combined and also seperate plots for
Full Skew-T, Isothermal lines, Isobars, Dry Adiabats, Moist
Adiabats, Mixing Ratio and Wind Staff.

1https://www.noaa.gov/jetstream/upperair/
skew-t-log-p-diagrams

https://www.noaa.gov/jetstream/upperair/skew-t-log-p-diagrams
https://www.noaa.gov/jetstream/upperair/skew-t-log-p-diagrams
https://www.noaa.gov/jetstream/upperair/skew-t-log-p-diagrams
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Figure 5. Isothermal lines in Skew-T diagram Figure 6. Isobaric lines in Skew-T diagram

Figure 7. Dry-adiabat lines in Skew-T diagram Figure 8. Moist-adiabat lines in Skew-T diagram
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Figure 9. Mixing ratio lines in Skew-T diagram
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Figure 10. Skew-T diagram
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15. Lecture 15 03/10/2024
15.1 . Cyclones
Properties of cyclones

1. Centre of cylce is called Eye of cyclone.
2. Cumulonimbus clouds forms the eye ball of cyclone.
3. Maximum height to where it can reaches is Tropopause

Figure 11. Internal Structure of cyclone

Image source: Internal Structure of cyclone2

Figure 12. Air circulation in cyclone

Image source: Air circulation in cyclone3

2https://web.mit.edu/˜twcronin/Public/Lupit_
Cross_Sections.html

3https://www.britannica.com/science/
tropical-cyclone

15.2 . Specific enthaphy
Enthaphy is heat content of state.

H =U +PV (313)
∆H = ∆U +∆(PV ) (314)
∆H = ∆U +P∆V +V ∆P (315)
∆H = Q−W +P∆V +V ∆P (316)
∆H = Q−���P∆V +���P∆V +V ∆P (317)
∆H = Q+V ∆P (318)

At constant pressure

∆H = Q (319)
h = u+Pα (320)

dh = du+d(PV ) (321)
dh = du+Pdα +αdP (322)
dh = δq+αdP (323)
δq = dh−αdP also, (324)
δq =CpdT −αdP (325)

From Eq.(324) and Eq.(325)

dh−αdP =Cp −αdP (326)

At constant Pressure

dh =CpdT (327)

Enthalphy is ”sensible heat”

Conservative property
For a hydrostatic atmosphere:

d p
dz

= ρg ⇒ d p =−ρgdz (328)

Substitute Eq.(325) in Eq.(328)

δq =CpdT −�α�ρgdz (329)
δq =CpdT +gdz (330)
δq = dh+dφ (331)
δq = d(h+φ) (332)

If process is adiabatic δq = 0

h+φ = const (333)

Eq.(333) called dry static equation.
This implies that when air parcel goes up (in geopotential) by
the expense of heat content (enthalphy), i.e. [h ↑ φ ↓].

T1

lnP1

T2

lnP2

A

https://web.mit.edu/~twcronin/Public/Lupit_Cross_Sections.html
https://www.britannica.com/science/tropical-cyclone
https://web.mit.edu/~twcronin/Public/Lupit_Cross_Sections.html
https://web.mit.edu/~twcronin/Public/Lupit_Cross_Sections.html
https://www.britannica.com/science/tropical-cyclone
https://www.britannica.com/science/tropical-cyclone
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Area A ∝ (T2 −T1)(lnP2 − lnP1) (334)

∝ (T2 −T1) ln
(P2

P1

)
(335)

Cycle 1:

w1 =
∫

Pdα

= P
∫

α2

α1

dα

= P(α2 −α1)

= Rd(T2 −T1)

Cycle 2:

w2 =
∫

Pdα

=
∫

α2

α1

RdT
α

dα

= RdT2 ln
(

α2

α1

)
= RdT2 ln

(P1

P2

)
Cycle 3:

w3 =
∫

Pdα

= P
∫

α1

α2

dα

= P(α1 −α2)

= Rd(T1 −T2)

=−Rd(T2 −T1)

Cycle 4:

w4 =
∫

Pdα

=
∫

α1

α2

RdT
α

dα

= RdT1 ln
(

α1

α2

)
= RdT1 ln

(P2

P1

)
=−RdT1 ln

(P1

P2

)

wnet = w1 +w2 +w3 +w4

= Rd(T2 −T1)+RdT2 ln
(P1

P2

)
−Rd(T2 −T1)−RdT1 ln

(P1

P2

)
⇒ wnet = 0
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16. Lecture 16 07/10/2024
16.1 . Lesson learnt from carnot cycle

1. Thermodynamic effeciency of cyclone depends on sources,
given by Eq.(312)

When T1 =T2, carnot cycle does not exist called Kelvin’s
Postulate.

Carnot engine is most effiecent at winter because of dif-
ference in termperature, casues diverse climate change.

2. Transformation of heat is not possible from cold body
to hot body called Clausius postulate.

3. Carnot cycle could give us definition for absolute zero
temperature.

4. All process are irreversible, however, slow process can
be considered to be reversible.

16.2 . Entropy
Let’s recall that,

q1 = RdT1 ln
(

α2

α1

)
(336)

q1

T1
= Rd ln

(
α2

α1

)
(337)

Similiarly,

q2 =−RdT2 ln
(

α2

α1

)
(338)

q2

T2
=−Rd ln

(
α2

α1

)
(339)

q1

T1
+

q2

T2
= 0, q1 > 0,q2 < 0 (340)

Efficency of heat engine:

ηrev = 1− T2

T1
(341)

ηrev =
T1 −T2

T1
(342)

T1 ·ηrev = T1 −T2 (343)

Multiply and divide Eq.(340) by ηrev

q1

T1
· ηrev

ηrev
+

q2

T2
= 0 (344)

From Eq.(343),

q1 ·
ηrev

(T1 −T2)
+

q2

T2
= 0 (345)

The above expression is applicable only if process is perfectly
reversible.
If process is not prefrectly reversible, i.e., irreversible

q1 ·
ηirrev

(T1 −T2)
+

q2

T2
< 0 (346)

In general,

2

∑
i=1

qi

Ti
≤ 0,

{
= 0 if perfectly reversible,
< 0 if irreversible

(347)

⇒
N

∑
i=1

qi

Ti
≤ 0, for N number of sources. (348)

If N →∞∮
cyclic

process

δq
T

≤ 0 → Entropy (349)

δq =CvdT +Pdα (350)
δq
T

=Cv
dT
T

+P
dα

T
(351)∮

δq
T

=Cv

∮ dT
T

+
∮ RT

αT
dα (352)

ds =
∮

δq
T

=Cv

∮ dT
T

+R
∮

d lnα (353)

ds =
∮

δq
T

=Cv

∮
d lnT +R

∮
d lnα (354)

⇒ ds = s f − si =
∮ f

i

δq
T

(355)

Number of states in which the system can have large disorder
hence higher entropy.
(No. of molecule ↑) (No. of possible system states ↑) →
(Entropy↑)
//

Question 16.1: Show that entropy of ideal gas de-
pends on intial and final state of temperature and
volume.

⇒ ds =
∮ dq

T =Cv
∮

d(lnT )+R
∮

d(lnα)

∆S =
∫ f

i ds = S f −Si =Cv ln
(

Tf
Ti

)
+R ln

(
α f
αi

)
S f = Si +Cv ln

(
Tf
Ti

)
+R ln

(
α f
αi

)
S f = Si +Cv ln

(
Tf
Ti

)
+Cv(

R
Cv
) ln

(
α f
αi

)
S f = Si +Cv

[
ln
(

Tf
Ti

)
×
(

α f
αi

)(Cp−Cv
Cv

)]
S f = Si+Cv

[
ln
(

Tf
Ti

)
×
(

α f
αi

)(γ−1)]
where γ =Cp/Cv
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17. Lecture 17 10/10/2024
17.1 . Entropy
In last lecture we derived expression of entropy, i.e.∮ q

T
≤ 0

→ Depends on the final and initial states of temperature and
volume.
Let us consider a cyclic process with initial state i and final
state f , the path through which process occur be denoted by
R and I representing reversible and irrreversible processes.

i R−→ f Reversible

i I−→ f Irreversible

i

f

I

R

As we know from any cyclic process∮ q
T

≤ 0 (356)[∫ f

i

q
T

]
R
+
[∫ i

f

q
T

]
I
≤ 0 (357)

Since,

ds =
δq
T

(358)

S f −Si +
[∫ i

f

q
T

]
I
≤ 0 (359)

S f −Si ≥
[∫ f

i

q
T

]
I

(360)

ds ≥
[∫ f

i

q
T

]
I

(361)

T ds ≥ δq (362)

It indicates that the upperbound of the heat abosorbedby the
system during a given changes.
For an isolated system,

δq = 0 (363)
S f −Si ≥ 0 (364)

S f ≥ Si (365)

For a spontaneous irreversible transformation, occuring in
an isolated system, the final entropy is greater then initial
entropy.

17.2 . 2nd law of themodynamics
2nd law of themodynamics can be stated as:

1. For reversible transformation, there is no change in
entropy of universe.

2. The entropy of universe increase as a result of irre-
versible transformation.

∆Suniverse = ∆Ssystem +∆Ssurrounding

∆Ssurrounding = 0 For reversible transformation
∆Ssurrounding > 0 For irreversible transformation

//

Question 17.1: Calculate the change in air pressure
if the specific entropy decrease by 0.05Jg−1K−1

and the air temperature decreases by 5%.

⇒ To calculate the change in air pressure given the
specific entropy decrease and temperature change
Given:

• Change in specific entropy: ds =
−0.05Jg−1K−1

• Temperature decrease: dT = −0.05T (a de-
crease of 5%)

Assuming the process to be reversible
Using the equation:

ds =Cp d ln(T )−Rd ln(P)

Substituting values:

dT =−0.05T ⇒ d ln(T ) =
dT
T

=−0.05

ds =Cp (−0.05)−Rd ln(P)
−0.05 = 1005(−0.05)−287d ln(P)
−0.05 =−50.25−287d ln(P)

287d ln(P) =−50.25+0.05
287d ln(P) =−50.20

d ln(P) =
−50.20

287
≈−0.174

Integrating:

Pf = Pie−0.174

where Pf is the final pressure and Pi is the initial pres-
sure. ds = Cpd ln(T )−Rd ln(P)
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Recall that,

θ = T
(1000

P

) Rd
Cp (366)

lnθ = lnT +
Rd

Cp
ln(1000)− Rd

Cp
lnP (367)

Cpd(lnθ) =Cpd(lnT )−Rdd(lnP) (368)

From 1st law of thermodynamic,

δq =CpdT −αdP (369)

ds =
CpdT

T
− αdP

T
(370)

ds =
CpdT

T
− RddP

P
(371)

ds =Cpd ln(T )−Rdd ln(P) (372)

Comparing Eq.(368) and Eq.(368) we can find that,

ds =Cpd(lnθ) (373)
S =Cp lnθ + const. (374)

Therefore, lines of constant potential temperature are lines of
constant entropy, but not if process becomes irreversible. Spe-
cific entropy is given by logarithm of potential temperature,
when θ remains constant =⇒ entropy remains constant.
For irreversible transformation

ds > 0 dθ = 0

All isentropic process are adiabatic but all adiabatic process
are not isentropic.

//

Question 17.2: During a process a parcel of dry
air decent from 900hPa to 950hPa and if specific
entropy decreases by 30Jkg−1K−1. If it’s initial
temperature is 273K; What is it’s final temperature
and potential temperature?

⇒ The relationship between specific entropy S,
temperature T, and pressure P for an ideal gas assuming
the process to be reversible can be expressed as:

ds =Cp d ln(T )−Rd ln(P)

Given:

Pi = 900hPa,

Pf = 950hPa,

Ti = 273K,

Substituting values:

−30 = 1005ln
( Tf

273

)
−287ln

(950
900

)
−14.4827 = 1005ln

( Tf

273

)
Tf = 273× e−0.0144

Tf = 269.094K

Potential Temperature:

θ = Tf

(
P0

Pf

)R/Cp

Substituting the values:

θ = 269.7×
(950

900

)0.2855
≈ 273.6K

∴ The final temperature is 269K and potential
temperature is 273.6K
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18. Lecture 18 10/10/2024
18.1 . Special Forms of 2rd law of Thermodynamics

1. For finite isothermal transformation

∆U = 0 (375)

∆S ≥
∫

δq
T

(376)

∆S ≥ 1
T

∫
δq (377)

∆S ≥ q
T

(378)

∆S ≥ w
T

(379)

2. For adiabatic transformation

∆S ≥ 0 (380)

3. For Isochoric transformation

∆S ≥Cv
dT
T

(381)

∆S ≥Cv ln
(Tf

Ti

)
(382)

4. For Isobaric transformation

∆S ≥Cp
dT
T

(383)

∆S ≥Cp ln
(Tf

Ti

)
(384)

5. Combination of 1st and 2nd law

δq =CpdT −αd p (385)

ds ≥ q
T

(386)

T ds ≥CpdT −αd p (387)
T ds ≥ dh−αd p (388)

(389)

similiarlly,

δq =CvdT −αd p (390)

ds ≥ q
T

(391)

T ds ≥CvdT −αd p (392)
T ds ≥ du−αd p (393)

18.2 . Moist Processes
There are three processes in moist gases:

• Saturation
• Sub-saturation
• Supersaturation

Evaporation: Some water molecules have sufficient kinetic
energy to break free from the intermolecular forces of attrac-
tion.
Condensation: When water vapor cools down, molecules
lose kinetic energy and form liquid droplets due to intermolec-
ular attractions.

Figure 13. Saturated state

Figure 14. Sub-Saturated state

Figure 15. Super-Saturated state

For saturated state rate of evaporation is equals to rate of
condensation.
Saturation vapor pressure(es) depends only on temperature.
Boiling Point: The temperature at which vapor pressure is
equal to atmospheric temperature at the pressure of 1013hPa.

18.3 . Relative humidity
Relative humidity is defined as ratio of vapor pressure to
saturation vapor pressure.

Relative humidity (RH) =
e
es

×100% (394)

e < es(T )→ Sub-Saturation (395)
e = es(T )→ Saturation (396)
e > es(T )→ Super-Saturation (397)

Note: Specific humidity is associated with mass
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Figure 16. Saturation Vapor Pressure es vs Temperature T

18.4 . Dew point temperature
There are 2 ways to make sub-saturated to saturated:

1. Reduce temperature
2. Add moisture, so that vapor pressure increase.

If moisture amount remains constant and temperature is re-
duced, thus saturation is achieved and this temperature is
called Dew point temperature.

18.5 . Latent heat
Total energy required to convert unit mass from one phase to
another.
Specific enthapy of phase change.
Latent heat of water at STP is ≈ 106J/Kg (Depends on tem-
perature)

Latent heat of evaporation
Latent heat of evaporaton of water at:

• T =−40◦C, Latent heat = 2.6×106J/Kg
• T = 0◦C, Latent heat = 2.5×106J/Kg
• T = 40◦C, Latent heat = 2.26×106J/Kg

Latent heat of fusion
Latent heat of fusion of water at STP = 3.3×106J/Kg

Latent heat of sublimation
Latent heat of sublimation of water at STP = 2.83×106J/Kg

Question 18.1: On a winter day the ouside air
have temperature of -15◦C and relative humidity
of 70%.
a. If the outside air is brought inside and heated
to room temperature of 20◦C without adding mois-
ture. What is new relative humidity?
b. If the room volume is 60m3 then what mass of
water must be added to the air by the humidifier
to raise the relative humidity to 40%?
c. How heating is needed to accomplish a. and b.?

⇒⇒ a.The saturation vapor pressure at -15◦C can be
found usinglookup tables.
For T = 15◦C, the saturation vapor pressure,

es(−15◦C)≈ 1.93hPa

Given the relative humidity is 70%, the actual vapor
pressure at 15◦C is:

e =
70

100
×1.93hPa ≈ 1.35hPa

For T = 20◦C, the saturation vapor pressure,

es(20◦C)≈ 23.37hPa

Using the actual vapor pressure calculated earlier
e = 1.35hPa and the new saturation vapor pressure
es(20◦C):

RH at20◦C =
e
es
×100%=

( 1.35hPa
23.37hPa

)
×100%≈ 5.8%

⇒ b.To find mass of water needed to raise RH to 40%

e =
40
100

×23.37hPa = 9.35hPa

The amount of water vapor needed to raise the humidity
is proportional to the difference in vapor pressure:

∆e = 9.35hPa−1.35hPa = 8.00hPa

The mass of water vapor can be calculated using the
ideal gas law:

m =
∆eV
RvT

m =
800Pa×60m3

461.5Jkg−1K−1 ×293K
≈ 0.35kg

⇒ c.Heating Needed to Accomplish (a) and (b)

mair =
95000Pa×60m3

287Jkg−1K−1 ×258K
≈ 77.7kg

Qair = 77.7×1005×35 ≈ 2.73×106J

Qwater = 0.35×2.5×106 = 0.875×106J

Qtotal = 2.73×106 +0.875×106 ≈ 3.61×106J
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19. Lecture 19 21/10/2024
19.1 . The Clausius-Clapeyron equation
Let L is latent heat associated with phase change of a liquid(i)
to vapor( f ) state:

L =
∫

dq (398)

L =
∫ f

i
du+

∫ f

i
Pdα (399)

L = u f −ui + es(α f −αi) (400)

where es → saturation vapor pressure
When phase cahnge happen, temperature remains constant,
therefore

L = T
∫

δq
T

(401)

L = T
∫ f

i
ds (402)

L = T (S f −Si) (403)

From Eq.(400) and Eq.(403)

T (S f −Si) =U f −Ui + es(α f −αi) (404)
T S f −U f − esα f = T Si −Ui − esαi (405)

U + esα −T S = Const. = G (406)

where G is Gibbs energy
However, Gibbs energy is not constant when pressure and
temperature changes.

dG = du+ esdα +αdes −T ds− sdT (407)
dG =��T ds+αdes −��T ds− sdT (408)
dG = αdes − sdT (409)

consider a situation when liquid phase and vapor phase are in
equilibrium

dG1 = dG2 (410)
αides −SidT = α f des −S f dT (411)

S f −Si

α f −αi
=

des

dT
(412)

L
T (α f −αi)

=
des

dT
(413)

Eq.(413) is called Clasuius-Clapeyron equation.
Let initial state(i) be liquid state and final state( f ) be vapor
state (evaporation)

es

dT
=

L
T (αv −αl)

(414)

For atmosphere αv ≪ αl . therefore,

es

dT
≈ L

T αv
(415)

Using ideal gas equation esαv = RvT ,

des

dT
=

Les

RvT 2 (416)

Integrate form of Clausius-Clapeyron equation:∫ es

e0

es

es
=

∫ T

T0

LdT
RvT 2 (417)

ln
es

e0
=

L
Rv

[ 1
T0

− 1
T

]
(418)

es = e0 exp
( L

Rv

[ 1
T0

− 1
T

])
(419)

Standard values T0 = 273 K, e0 = 611 Pa or 6.11 hPa,
L = 2.5×106 J/kg, Rv = 461 JK−1kg
es(T )≈ Ae−B/T , where A = 2.53×1011Pa, B = 5420K.
This gives more accurate equation for temperature range from
−30◦C ⩽ T ⩽35◦C

es(T ) = 611.2
[ 17.69Tc

Tc +243.5

]
(420)

where Tc is temperature in celcius scale
For Ice,

ei(T ) = ei0 exp
( Ls

Rv

[ 1
T0

− 1
T

])
(421)

where Tc is temperature in celcius scale and Ls is latent heat
of sublimation.
es(T )≈ Aie−Bi/T , where A = 3.41×1012Pa, B = 6130K.

Question 19.1: For T of 265K; find the value of ei
and es.

⇒ ei(T ) = 611.2×1012 × e−
6130
265

= 3060.65Pa

⇒ es(T ) = 2.53×1011 × e−
5420
265

= 331.56Pa

ei < es → at subfreezing temperatures, the environment that
is saturated w.r.t liquid water is supersaturated w.r.t ice.
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20. Lecture 20 23/10/2024
20.1 . Saturation mixing ratio
Mixing ratio:

ω =
mv

md
(422)

ω =
ρv

ρd
(423)

ω =
εe

P− e
(424)

ω ≈ εe
P

(425)

where e = Rd
Rv

= 0.622

Saturation mixing ratio:

ωs(T,P)≈
εes(T )

P
Unit: g/kg (426)

ωs(T,P = 622hPa)≈ 0.622es(T )
622

= 0.001 kg/kg

(427)

ωs(T,P = 622hPa)≈ 0.001 kg/kg (428)
ωs(T,P = 622hPa)≈ es(T ) g/kg (429)

//

Question 20.1: Using skew-T diagram determine
the saturation vapor pressure at -10◦C.

⇒es =2.75hPa

−2 −1 1 2 3

2

4

6

8

10

T

P P = 622hPa
es ≈ 2.75hPa
T =−10◦C

//

Question 20.2: Using Skew-T diagram determine
the relative humidity of air parcel having tempera-
ture 20◦C and dew point Temperature of 10◦C at
presssure 850hPa

⇒ ωs(20◦C,850 hPa) = 18 hPa
ωs =

εes(T )
P

ω

ωs
≈ e

es(T )

RH = e
es(T )

×100%
RH = ω

ωs
×100%

RH = 9
18 ×100%

RH = 50%
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21. Lecture 21 24/10/2024
21.1 . Lifting Conduction Level (LCL)

ωs =
εes(T )

P

As P decrease T decrease.
dωs
d p decides how saturation vapor pressure depends on pres-

sure only (not on both Temperature and Pressure)

dωs

dP
=

d
dP

[
εes(T )

P

]
(430)

= ε

[ 1
P

des(T )
dP

− es

P2

]
(431)

=
εes

P

[ 1
es

des(T )
dP

− 1
P

]
(432)

=
εes

P

[ 1
es

des(T )
dT

dT
dP

− 1
P

]
(433)

Using Clausius-Clapeyron equation Eq.(416)

dωs

dP
=

εes

P

[ 1

�es

L�es

RvT 2
dT
dP

− 1
P

]
(434)

dωs

dP
=

εes

P

[ L
RvT 2

dT
dP

− 1
P

]
(435)

Since process is adiabatic (Lifting of moist air):

CpdT −αdP = 0 (436)

Cp
dT
dP

−α = 0 (437)

dT
dP

=
α

Cp
(438)

dT
dP

=
RdT
CpP

(439)

Substiting Eq.(439) in Eq.(435), we get

dωs

dP
=

εes

P

[ L
RvT 2

α

Cp
− 1

P

]
(440)

dωs

dP
=

εes

P

[ L

RvT �2

Rd�T
CpP

− 1
P

]
(441)

dωs

dP
=

εes

P2

[ L
RvT

Rd

Cp
−1

]
(442)

dωs

dP
=

ωs

P

[ RdL
RvCpT

−1
]

(443)

dωs

dP
=

ωs

P

[
εL

CpT
−1

]
(444)

ωs decreases w.r.t height (Since P decrease with height). ωs
decreases for any adiabatic uplift of air parcel.
Lifting Conduction Level is at ω = ωs
Lifting Conduction Level is a level at which cloud start form-
ing. It could be either Presure level or Temperature level).

LCL
Mountain

Clouds

//

Question 21.1: Find out LCL for an air parcel
which has a temperature of 30◦C and dew point
temperature of 0◦C at 1000hPa.

⇒ 650hPa

//

Question 21.2: Find out LCL for an air parcel
which has a temperature of 25◦C and dew point
temperature of 18◦C at 900hPa.

⇒ 920hPa

LCL(Km) ≈ T −T0

8
(445)

LCL(hPa) = pexp(−0.044∆Td) (446)

where ∆Td is dew point depression which is eequal to (T −Td).
Just above LCL → phase change happen → release of latent
heat which provides extra amount of energy, therefore, parcel
will no longer follow dry adibat , but moist adiabatic lapse
rate. It depends upon moisture content present in air.
This process is called pseudo-adiabatic process because
mass get lost in precipitation.

Dry adiabat lapse rate (DALR):

Γd =
g
cp

= 9.8◦C/km

Above LCL, parcel will follow saturated adiabatic lapse
rate Γs which is always less than dry adiabatic lapse rate, i.e.
(Γs < Γd)
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22. Lecture 22 25/10/2024
22.1 . Saturation Adiabatic Lapse Rate

δq =CpdT −αdP (447)

δq = 0 since process is adiabatic for dry adiabat Γd , but for
aturation adiabatic (Γs) δq ̸= 0
Additon of heat from latent heat of water vapor

δq =−Ldωs (448)

where ωs is saturation mixing ratio.
Therefore,

−Ldωs =CpdT −αdP (449)

The term ωs changes w.r.t pressure and temperature,

dωs =
ωs

∂P
dP+

ωs

∂T
dT (450)

Using the expression ωs ≈ εes
P

dωs =−εes

P2 dP+
εes

P
1
es

des

dT
dT (451)

dωs =−ωs
dP
P

+ωs
L

RvT 2 dT (452)

−Ldωs = Lωs
dP
P

−ωs
L2

RvT 2 dT (453)

cpdT −αdP = Lωs
dP
P

− L2ωs

RvT 2 dT (454)

Invoking hydrostatic approximation

∂P
∂ z

=−ρg (455)

gdz =−αdP (456)

cpdT
gdz

− αdP
−αdP

=
Lωs

dP
P

−αdP
−

L2ωs
RvT 2 dT

gdz
(457)

cpdT
gdz

−
���αdP
−���αdP

=
Lωs��

dP
P

−α��dP
−

L2ωs
RvT 2 dT

gdz
(458)

cpdT
gdz

+1 =
Lωs

−αP
− L2ωsdT

RvT 2gdz
(459)( L2ωs

RvgT 2 +
cp

g

)dT
dz

=
Lωs

αP
+1 (460)

Recall Γd = g
cp

T ′
T ≈ g

cp

where T ′ is temperature of parcel and T is temperature of
atmosphere.
Multipling g

cp
to Eq.(460)

( L2ωs

RvgT 2
g
cp

+
cp

g
g
cp

)dT
dz

=
Lωs

αP
g
cp

+
g
cp

(461)

Using ideal gas eq, Pα = RdT( L2ωs

RvcpT 2 +1
)dT

dz
=

Lωs

RdT
Γd +Γd (462)

Γs =
dT
dz

=
Γd

(
Lωs
RdT +1

)
(

L2ωs
RvcpT 2 +1

) (463)

If ωs = 0, which mean air is not moist→Γs = Γd = 9.8◦C/km

Γs =
d lnT
d lnP

≈

(
Lωs
RdT +1

)
(

L2ωs
RvcpT 2 +1

) Rd

cp
(464)

Γs ≈ 6.5◦C/km which can vary between 4 to 7 depending on
amount of moisture content in air.
Note: Potential temperature is no more conserved quantity
above LCL.

22.2 . Equivalent potential temperature (θe)
θe is conserved during moist adiabatic process.

θe = θ exp
( Lω

cpTLCL

)
(465)

//

Question 22.1: Using skew-T estimate θs of air
parcel which has 30◦C temperature and 10◦C dew
point temperature at 900hPa; which then raises
adiabatically.

⇒ 770hPa and 650hPa
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23. Lecture 23 30/10/2024
23.1 . Psychrometer

Td

Dry Bulb Thermometer

Tw

Moist cotton

Wet Bulb Thermometer

Figure 17. Psychrometer

At saturated air (100% moist air) → Td = Tw
∴ It gives information about relative humidity.

900

1,000

1,100

1,200

Isobars

P1

LCL

P2

Dry Adiabat

T Te

Moist Adiabat

Td

ω0
Saturation mixing ratio

ω1

Pressure (hPa)

Figure 18. Skew-T diagram with Isobars, Dry and Moist
Adiabat

23.2 . Normand’s rule

Td ≤ Tw ≤ T (466)

where

Td is dew point temperature.
Tw is wet bulb temperature.
T is parcel temperature.
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24. Lecture 24 04/11/2024
24.1 . Adiabatic cloud water content
Water vapor mixing ratio:

ω =
mv

md
(467)

Liquid water mixing ratio:

ωl =
ml

md
(468)

Total mixing ratio:

ωTotal = ω +ωl (469)

Assumpution considered are:

• Air contains only vapor and liquid water. There is no
ice in air.

• Water does not precipitate during the process.

900

1,000

1,100

1,200

P1

LCL

P2

T TeTd

ω0ω1

Pressure (hPa)

Figure 19. Skew-T diagram with Isobars, Dry and Moist
Adiabat

Liquid water content (LWC)

LWC = (ω0 −ω1) (470)

24.2 . Flow over terrain
1. Moist adaibatic process

LCL
Mountain

Clouds

A

B

2. Pseudo adaibatic process

LCL
Mountain

Clouds

Precipitation

A

B

//

Question 24.1: Consider a situation in which moist
air from Arabian sea is advented to western ghats
undergoing irreversible pseudo-adiabatic process
and the pressure level at which parcel asent is
850hPa and temperature of parcel is 20.6◦C; dew
point temperature 15.7◦C. The minimum pressure
at summit is 610hPa.
a. Find out the initial mixing ratio and relative
humidity (RH) od air parcel before the asent.
b. Find out the final temperature and dew point
temperature experienced by the parcel at the lee-
ward side of the mountain at the same level.

⇒

24.3 . Atmospheric stability
Hydrostatic inbalance in small-scale scenarios such as torna-
dos.

• Stable
• Unstable
• Neutral
• Metastable
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25. Lecture 25 06/11/2024
25.1 . Atmospheric stability
Over large scale, atmoshere is in hydrostatic balance

d p
dz

=−ρg (471)

Convection/small scale process
Following assumptions are made in order to asscess the stabil-
ity condition:

1. The environment is in hydrostaic equlibrium.
2. The parcel does not mix with surrounding.
3. The parcel movement does not distrub the surrounding.
4. The process is adiabatic.
5. At any given level, pressure inside the parcel equals to

that of envirnment.

Three conditions

Equilibrium States

Stable

x

y

Unstable

x

y

Neutral

x

y

Metastable

x

y

25.2 . Equation of motion for the parcel
Because the environment is in hydrostatic equlibrium given
by Eq.(471) This does not hold wave equation for a parcel,
i.e.,

ρ
′ d

2z
dt2 =−d p′

dz
−ρ

′g (472)

d2z
dt2 =− 1

ρ ′
d p′

dz
−g (473)

d2z
dt2 =−α

′ d p′

dz
−g (474)

Using the assumption (5):

d p′

dz
=

d p
dz

(475)

d2z
dt2 =−α

′
(−g

α

)
−g (476)

d2z
dt2 =

(
α

α

)
g−g (477)

d2z
dt2 =

(
α ′−α

α

)
g (478)

d2z
dt2 =

(
ρ −ρ ′

ρ ′

)
g (479)

Using Ideal gas equation,

d2z
dt2 =

(T ′
v −Tv

Tv

)
g (480)

We consider a displacement of a parcel from its mean position
,such that z ≪ 1.
If for simplicity we take the level to be at z = 0, where tem-
perature is Tv0 . Express Tv and Tv0 in terms of taylor series:

Tv = Tv0 +
dTv

dz
z
1!

+
d2Tv

dz2
z2

2!
+ · · · (481)

T ′
v = Tv0 +

dT ′
v

dz
z
1!

+
d2T ′

v

dz2
z2

2!
+ · · · (482)

Neglect the higher order terms;

Tv = Tv0 +
dTv

dz
z (483)

T ′
v = Tv0 +

dT ′
v

dz
z (484)

Γv =−dTv

dz
→ Environment lapse rate (485)

Γ
′
v =−dT ′

v

dz
→ Parcel lapse rate (486)

d2z
dt2 = g

(Γv −Γ′
v)

(Tv0 −Γvz)
z (487)

Taking 1
Tv0−Γvz for simplification;

1
Tv0 −Γvz

=
1

Tv0

( 1
1− Γvz

Tv0

)
(488)

1
Tv0 −Γvz

=
1

Tv0

(
1− Γvz

Tv0

)−1
(489)

(490)

since, Γvz
Tv0

≪ 1, we can rewrite above equation as:

1
Tv0 −Γvz

≈ 1
Tv0

(
1+

Γvz
Tv0

)
(491)

Therefore, Eq.(487)

d2z
dt2 ≈ g(Γv −Γ

′
v)×

1
Tv0

(
1+

Γvz
Tv0

)
(492)

d2z
dt2 ≈ g

Tv0

(
Γvz+

Γ2
vz2

Tv0

−Γ
′
vz− Γ′

vΓvz2

Tv0

)
(493)

Ignoring z2 terms, we get;

d2z
dt2 ≈ g

Tv0

(Γv −Γ
′
v)z (494)

d2z
dt2 − g

Tv0

(Γv −Γ
′
v)z = 0 (495)
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The above Eq.(495) is 2nd order diffreential equation, there-
fore we can rewrite equation as:

d2z
dt2 −ω

2z = 0 (496)

where ω =
√

g
Tv0

(Γv −Γ′
v)
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26. Lecture 26 07/11/2024
26.1 . Stabitity analysis
3 possible solutions exists:

1. Stable solution i.e. (Γ′
v −Γv)> 0

d2z
dt2 +ω

2z = 0 (497)

General solution is :

z(t) = Asinωt +Bcosωt (498)

Boundary conditions : t = 0,z = 0 ⇒ B = 0

z(t) = Asinωt (499)

Time period of oscillation ⇒ τ = 2π

ω

2. Unstable solution i.e. (Γ′
v −Γv)< 0

d2z
dt2 −ω

2z = 0 (500)

General solution is :

z(t) = Aexp(ωt)+Bexp(−ωt) (501)

Boundary conditions : t → ∞ ⇒ A = B ̸= 0

z(t) = Aexp(ωt) (502)

Time period of oscillation → τ = 2π

ω

3. Neutral solution i.e. (Γ′
v −Γv) = 0

d2z
dt

= 0 (503)

General solution is:

z(t) = At +B (504)

Boundary conditions : t = 0 ⇒ A = 0

dz(t)
dt

= A (505)

Time period of oscillation is not defined.

For unstaurated air parcel :

1. ΓEL > Γd → atmosphere becomes unstable.
2. ΓEL < Γd → atmosphere becomes stable.

For staurated air parcel :

1. ΓEL > Γs → atmosphere becomes unstable.
2. ΓEL < Γs → atmosphere becomes stable.
3. ΓEL = Γs → atmosphere becomes neutral.

where,

ΓEL = environment lapse rate
Γd = 9.8◦C/km
Γs ≈ 6.5◦C/km (depends on place and humidity)

1. ΓEL > Γd → layer is absolutely unstable.
2. ΓEL < Γs → layer is absolutely stable.
3. Γd < ΓEL < Γd → layer is conditionally unstable (con-

ditionlly instablilty).

TA TB

A B

O

Γd

Γ

Temperature (°C)

H
ei

gh
t(

km
)

Dry Adiabatic Lapse Rate
Moist Adiabatic Lapse Rate

Figure 20. Case 1: ΓB > ΓdA
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Figure 21. Case 2: ΓB < ΓdA
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Figure 22. Case 3: ΓB = ΓdA

26.2 . Convective instability or Potential instability
Potential temperature (θe):

θe = T
(1000

P

) Rd
Cp (506)

Taking logorithm on both sides,

lnθe = lnT +
Rd

Cp
ln(1000)− Rd

Cp
lnP (507)

Differentiating above Equation w.r.t z

1
θe

θ

dz
=

1
T

dT
dz

− Rd

Cp

(−d p
dz

)
(508)

1
θe

θ

dz
=

1
T

dT
dz

− ��Rd

Cp�p

(−�pg

��RdT

)
(509)

1
θe

θ

dz
=

1
T

dT
dz

+
1
T

( g
Cp

)
(510)

1
θe

θ

dz
=− 1

T
Γ+

1
T

Γd (511)

1
θe

θ

dz
=

1
T
(Γd −Γ) (512)

1. dθe
dz > 0 → Potentially Stable

2. dθe
dz < 0 → Potentially Unstable

3. dθe
dz = 0 → Potentially Neutral

LCL
650 hPa
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750 hPa

Mosit layer

Γs ≈ 6.5◦C/km
Γ = 9.8◦C/km

Temperature (T) [°C]

H
ei

gh
t(

z)
[m

]
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650 hPa

750 hPa
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Temperature (T) [°C]

H
ei

gh
t(

z)
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27. Lecture 27 08/11/2024
27.1 . Convective Available Potential Energy (CAPE)

and Convective Inhibition (CIN)

δω = F ·dz (513)
δω = madz (514)

δω = m
d2z
dt2 dz (515)

Integrating above equation to get total work done by the parcel
and using Eq.(480);

W =
∫ f

i
mg

(T ′
v −Tv

Tv

)
dz (516)

w =
∫ f

i
g
(T ′

v −Tv

Tv

)
dz (517)

Using hydrosattic equation/approximation Eq.(94);

w =
∫ f

i

−1
ρ

(T ′
v −Tv

Tv

)
d p (518)

Using Ideal equation (P = ρRdTv);

w =
∫ f

i
−
(Rd��Tv

P

)(T ′
v −Tv

��Tv

)
d p (519)

w =−Rd

∫ f

i
(T ′

v −Tv)d(ln(P)) (520)

Therefore,

CAPE =−Rd

∫ ZEL

ZLFC

(T ′
v −Tv)d(ln(P)) (521)

CIN =−Rd

∫ ZLFC

Z=0
(T ′

v −Tv)d(ln(P)) (522)

Theritical maximum velocity

1
2

w2
max = CAPE (523)

wmax =
√

2×CAPE (524)

• < 0 → stable
• 0−1000 → marginally unstable
• 1000−2500 → morderately unstable
• 2500−3500 → highly unstable
• > 3500 → extremely unstable (wind speed may reach

upto 50-70m/s indicating storms)

//

Question 27.1: Given an air parcel at 850hPa with
temperature T is 13◦C and dew point temperature
Td is8◦C

Pressue level Env. Temeperature
800 Data
750 Data
700 Data
650 Data
600 Data
550 Data
500 Data
450 Data
400 Data
350 Data
300 Data

Figure 23. Solution of Question 27.1
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28. Lecture 28 11/11/2024
• Cloud droplet size ≈ 1µm.
• Rain drop size ≈ 1mm.

28.1 . Clasisus-Clapeyron Equation
Vapor to Water, condensation:

es

T
=

L
T (αv −αw)

≈ L
T αv

(525)

Vapor to Ice, sublimation:

esi

T
=

Ls

T (αv −αi)
≈ Ls

T αv
(526)

Vapor to Ice, fusion:

p
T

=
L f

T (αw −αi)
(527)

273.16 K

61
1.

73
hP

a

Triple Point

Ice

Liquid

Vapor

Temperature (T) [◦C]

Pr
es

su
re

(P
)[

hP
a]

28.2 . Weigner-Bergeron-Findeisn Therory
Theory describes a process in mixed-phase clouds where ice
crystals grow at the expense of surrounding supercooled water
droplets. This theory explains how precipitation forms in cold
clouds (those with temperatures below freezing) through the
following mechanism:

1. Different Saturation Vapor Pressures: In a cold cloud
with both ice crystals and supercooled water droplets,
the saturation vapor pressure over ice is lower than that
over liquid water. This means that water vapor is more
likely to condense onto ice than onto liquid droplets.

2. Growth of Ice Crystals: Water vapor moves from the
liquid droplets (which gradually evaporate) to the ice
crystals, causing the ice crystals to grow. This transfer
of water vapor from droplets to ice crystals results in the
gradual disappearance of liquid droplets and an increase
in ice crystal size.

3. Initiation of Precipitation: As ice crystals grow, they
eventually become large enough to fall from the cloud
as snowflakes or, if they melt on the way down, as
raindrops.

This process is particularly important in middle and high
latitudes, where clouds are often mixed-phase, and it provides
a primary mechanism for precipitation in cold clouds.
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29. Lecture 29 13/11/2024
29.1 . Classifiaction of cloulds

Cloud Classification

Composition

Mixed
Cold
Warm

Height
> 6 km (high)

2−6 km (middle)
0−2 km (low)

Texture
Stratiform

Cumuliform
Cirriform

29.2 . Types of particles within the clouds
Collective condensed particle within the cloud ’hydrome-
teous’

1. Cloud droplets →∼ 400 µm to 10µm.
2. Raindrops → A few hundred of µm to 3nm ∼ 1nm.
3. Ice cystrals → Tens of µm to hundred of µm.
4. Snow flakes → Few cm, crystalline ice particles.
5. Grapel → Few cm, when supercooled water frezzes on

the surface of ice crystals.
6. Hail → Ice, around 5mm ∼ 15cm.

29.3 . Nucleation
Fundamental process of phase change is called as Nucleation.
Nulceation are of 2 types:

1. Homgeneous : Involve forign particles (aerosols), CNN
(Cloud Condensation Nuclei)

2. Hetrogeneous

Small thermal purturbation/attenuation can disintegrate i-mer.
Embreyo → collection of water molecule.
Germ → activated embreyo (Started to show water droplet
properties).

Nucleation Cloud

Monomer

Dimer

i-mer

One basic assumption of classic nulcleation theory is that the
population of i-mer embreyos follows Boltman’s distribu-

tion.

Ni = N exp
(−∆Ei

KT

)
(528)

Ni = N exp
(

µv −µl

KT

)
(529)

e = esat exp
(

µv −µl

KT

)
(530)

µv −µl = KT ln
( e

esat

)
(531)

where,

N = number of molecules
µv and µl = chemical potentials of vapor and liquid resp.

Let us suppose that a small embreyoic water droplet with
volume (V ) and surface (A) from from a pure supersaturated
water vapor.
Decrease in energy

∆E = nV (µv −µl) (532)

where,

n = No. of water vapor molecule.

Work is needed to be done to create surface area:

Aσ (533)

where,

A = Area
σ = surface energy

Net increase in the energy of the system:

∆E = Aσ −nV (µv −µl) (534)

∆E = Aσ −nV KT ln
( e

es

)
(535)

If the droplet i sperical shaped with radius R.

∆E = (4πR2)σ − 4
3

πR3nKT ln
( e

es

)
(536)

Where, R∗ is critical radius.

1. Under subsaturated condition (e< es) → ∆E > 0 (Droplets
will never form)

E
∗

R (Radius)

∆E (Energy) ∆E
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2. Under supersaturated condition (e > es) → ∆E > 0
uptill R∗ then ∆E < 0

R∗

E
∗

R (Radius)

∆E (Energy) ∆E

To find critical radius of embreyo (R∗):

d(∆E)
dR

=
d
[
(4πR2)σ − 4

3 πR3nKT ln
(

e
es

)]
dt

= 0

(537)

d(∆E)
dR

= 8πRσ −4πR2nKT ln
( e

es

)
= 0 (538)

R∗ =
2σ

nKT ln
( e

es

) (539)

Eq.(539) is called Kelvin’s equation

0.01 0.08 0.1 0.3 0.5 1

10
0

11
1

11
2

Droplet radius (µm)

R
H

%

∆E

//

Question 29.1: Show that height of critical barrior
(∆E∗) is given by 16πσ3

3
(

nKT ln
(

e
es

))2 .

⇒ At R = R∗

∆E = 4π(R∗)2σ − 4
3 π(R∗)3nKT ln

( e
es

)
∆E = 4π

( 2σ

nKT ln e
es

)2
σ − 4

3 π
( 2σ

nKT ln e
es

)3nKT ln
( e

es

)
∆E = 4π

4σ3(
nKT ln e

es

)2 − 4
3 π

8σ3(
nKT ln e

es

)2

∆E = 4π
12σ3

3
(

nKT ln e
es

)2 −4π
8σ3

3
(

nKT ln e
es

)2

∆E = 4π
4σ3

3
(

nKT ln e
es

)2

∆E = 16πσ3

3
(

nKT ln e
es

)2

//

Question 29.2: Determine the fractional changes
in (∆E∗) and (R∗) if surface tension (σ ) is reduced
by 10% by adding soap in pure water.

⇒σ decreases by 10% by adding soap to pure water
d(∆E∗)

dσ
= 16πσ2

nKT ln
(

e
es

) = 3×0.1 = 30%

d(∆E∗)
∆E∗ = 3dσ

σ

d(∆R∗)
dσ

= 2
nKT ln

(
e
es

)
d(∆R∗)

R∗ = dσ

σ
= 1×0.1 = 10%

Fractional change in ∆E∗ is 30% and for R∗ is 10%
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30. Lecture 30 14/11/2024
30.1 . Supersaturation with respect to plane surface

of pure water

Eva Con
1

2

1. Larger chance of escape→rate of evaporation increases.

Eva

Droplet

2. Lower chance of escape→rate of evaporation decreases.

Eva Con

Droplet

∴ Saturation vapor pressure of pure water will be different for
different geometry.
The vapor pressure adjucent to solution droplet is reduced as
compared to pure water droplet.

30.2 . Köhler Equation
The Köhler equation describes the equilibrium vapor pressure
over a curved water droplet, accounting for both curvature
and solute effects.
Fractional reduction in the vapor pressure is equivalent to
mole fraction.
Mole fraction of a pure water droplet is defined as number
of moles of pure water in the solution by the total number of
moles of the solution.

F =
nPW

nPW +nS
(540)

Consider a solution of droplet of radius r that contains a mass
m (in kg) dissolved in material of molecular mass MS. For
example, take solution of common salt in water:

NaCl → Na++Cl−

Each molecule of the material dissolves in i ions in water.
∴ Effective number of moles will be:

neff = nS = i
m

MS
(541)

If we assume ρ ′ is the density of solution, number of moles
of pure water in the droplet is:

nPW =

( 4
3 πr3ρ ′−M

)
Mw

Mole fraction (F ) of water droplet, substitute Eq.(541) and
Eq.(542) in Eq.(540):

F =

( 4
3 πr3ρ ′−M

)
/Mw( 4

3 πr3ρ ′−M
)
/Mw + im/MS

(542)

F =
[
1+

imMw

MS
( 4

3 πr3ρ ′−M
)]−1

(543)

e
es

= exp
( 2σ

nkTr

)
(544)

e
es

·F = exp
( 2σ

nkTr

)[
1+

imMw

MS
( 4

3 πr3ρ ′−M
)]−1

(545)
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Course complete

Thank you!
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